SAVE THE DATE!!
2009 ASPET Annual Meeting
at Experimental Biology 2009
April 18 - 22
New Orleans, Louisiana

2009 Symposia:

A Renaissance in Marine Pharmacology: Preclinical Curiosity to Clinical Reality
Advances in Down Syndrome Neuroscience Research: Implications for Alzheimer's Disease, Dementias, & Other Cognitive Disorders
All Presidents' Symposium on Integrative Pharmacology
AMPK as a Novel Therapeutic Approach for the Treatment of Metabolic Disorders & Heart Disease
Discovery & Development of Oligonucleotide Therapeutics
Emerging Approaches to Treatment of Alzheimer's Disease
Endothelial Progenitor Cells & Cardiovascular Disease - From Bench to Bed Site
Exposure to Environmental Agent Alters Epigenetic Homeostasis
Generating Proteomic Diversity in Xenobiotic Biotransformation with Alternative RNA Splicing
Integrating Basic Sciences & Patient Care in a Core Clerkship Curriculum
Metabolomics in the Search for Biomarkers for Human Health
microRNAs as Biological Effectors & as Pharmacological Targets in the Cardiovascular System
Neuroplastic & Neurodegenerative Changes Associated with Drug Abuse and Addiction
Receptor Signaling & Regulation in Neuropsychiatric Research
Regenerative Pharmacology
Regulation of Xenobiotic Metabolizing Enzymes in Humans: Implications for the Propagation of Health & Disease
Targeting Drug Metabolizing Enzymes for Effective Chemopreventive Approaches
The Role of Nuclear Receptors in Lipid Homeostasis
The Role of Insulin & Leptin in Drug Addiction and Mood
The Serotonin Transporter: Non Just for Neurons Anymore
Therapeutics in Autoimmunity: Treatment Successes & Side Effects as a Tool of Elucidating Pathogenic Pathways
Viralety-encoded G Protein Coupled Receptors as New Drug Targets?

See You in the Big Easy!!
For more Info: www.eb2009.org

Photos Courtesy of New Orleans Convention and Visitors Bureau
Introducing our latest addition.
Our new Model 2006 has a 200 µl reservoir, 6 week duration at 0.15 µl/hr.

Test your hypotheses – not your research tools.
ALZET® pumps are proven technology; more than 10,000 published studies demonstrate their reliable use to deliver a wide range of test agents. We now offer 12 pump models designed to infuse from 1 day to 6 weeks in animals from small mice to large cattle. No batteries to fail or software to learn; use the peace of mind and extra time to design your next study.

With ALZET Catheters – test your drug’s effects nearly anywhere.
If you choose to use a catheter, such as for IV or targeted delivery, select from among 10 different ALZET catheters. Designed with your methods in mind, these catheters include features such as suture anchors and specially sized tips to streamline your surgeries. Connect a catheter to any ALZET pump and deliver the agent right to the target site. Determine whether your compound has the effect you predicted, while avoiding drug side effects that can result from systemic dosing.

Visit alzet.com for more information on our two newest pumps, or references in your area of interest. Or, contact us directly for more details by phone (877-922-5938) or e-mail (alzetcs@durect.com).
Journals of the American Society for Pharmacology and Experimental Therapeutics

Widely Read and Highly Respected

www.aspetjournals.org
Highlighted Papers

Dissecting Oxidative Stress following Ischemic Reperfusion

Numerous studies have shown that production of reactive oxygen and nitrogen species (ROS and RNS) during reperfusion causes tissue damage due in part to inactivation of mitochondrial electron transport chain proteins. The damage is paradoxical as the vasodilator, nitric oxide (NO), produced from sheer-stressed endothelial cells is a protective species that should increase blood flow. Likewise, superoxide dismutase (SOD) can convert the superoxide to hydrogen peroxide that should then also trigger vasodilation via activation of protein kinase G. It has been hypothesized that, instead, NO and superoxide react with each other to give peroxynitrite. The peroxynitrite is a potent oxidant that is known to inactivate mitochondrial proteins. It has been difficult to validate this chain of events in vivo due to the short halflives and limited detection modalities for ROS and RNS. In this issue, the article by Xu et al. provides compelling support for this mechanistic scenario via the clever use of endothelial NO−/− mice, blood flow measurements, SOD mimetics, and in vivo electron paramagnetic resonance oximetry. In the untreated control mice, there is considerable tissue damage, loss of contractile function, and damage to mitochondrial proteins. The SOD mimetic agents efficiently trap the burst phase superoxide via rapid conversion to hydrogen peroxide to produce increased blood flow, improved contractile functional recovery, and suppressed inactivation of mitochondrial proteins. Much of the protection is lost when the mice are also treated with glibenclamide, suggesting that the primary vasodilatory effect of NO and hydrogen peroxide is via activation of sarcolemmal ATP-sensitive potassium channels. Collectively, these results confirm the proposed mechanisms that underlie oxidative stress following ischemic reperfusion and suggest therapeutic options that can be used to ameliorate the subsequent tissue damage.

An Unexpected Role for Peripheral Serotonin 5-HT$_{2A}$ Receptors

The neurotransmitter serotonin, 5-hydroxytryptamine (5-HT), is a pleiotropic agent in the brain that has important roles in cognition. An important serotonin receptor in the brain, 5-HT$_{2A}$, is also expressed in peripheral tissues; however, functional roles for serotonin signaling outside of the central nervous system are not well defined. In this issue, the article by Yu et al. shows that functionally selective activation of the 5-HT$_{2A}$ receptors in smooth muscle produces a profound suppression of tumor necrosis factor α (TNF-α)-mediated inflammatory responses. The authors examined the effect of a highly selective 5-HT$_{2A}$ agonist, (R)-DOI [(R)-1-(2,5-dimethoxy-4-iodophenyl)-2-amino propane], in a well established model system for the study of inflammatory responses, primary cultures of rat aortic smooth muscles. It was found that (R)-DOI potently suppressed TNF-α-triggered expression of inflammatory markers, such as intracellular adhesion molecule 1 (ICAM-1), vascular adhesion molecule 1 (VCAM-1), interleukin-6 expression, nitric-oxide synthase activity, and nuclear factor-kB (NF-kB) nuclear translocation. The authors made two surprising discoveries. First, (R)-DOI blocks TNF-α effects with an IC$_{50}$ of 10 to 20 pM. Second, it can do so when administered hours after TNF-α treatment. Such potency is unprecedented, and the observation of efficacy, even when administered after initiation of an inflammatory response, opens the door to possible treatments of numerous pathologies, such as atherosclerosis, rheumatoid arthritis, or Alzheimer’s disease. The super potency of (R)-DOI is also an excellent example of selective, functional receptor activation. Although other agents with similar agonist affinity for 5-HT$_{2A}$ suppress TNF-α effects, they do not exhibit the potency of (R)-DOI. It is known that (R)-DOI preferentially activates the phospholipase-C$_{P}$, protein kinase C (PKC) axis as opposed to activation of phospholipase-A$_{2}$, although the results also implicate participation of a nontraditional PKC. Thus, it remains to be seen whether the potent inflammatory effects seen here also involve nontraditional effector coupling of the G-protein-coupled 5-HT$_{2A}$. Regardless, the study provides important insights into 5-HT$_{2A}$ function in the periphery while also opening the door to a new and exciting avenue for development of novel anti-inflammatory agents.

See article at J Pharmacol Exp Ther 2008, 327:316-323.

T-Cell Migrations during Inflammatory Bowel Disease

Although the etiology of inflammatory bowel disease (IBD) is complex, it bears a number of similarities to other inflammatory diseases that are partly mediated by rogue T cells, such as rheumatoid arthritis and pulmonary fibrosis. In some of these other pathologies, it has become clear that the CXCL12 chemokine and its receptor, CXCR4, are important for targeting of both regulatory and effector T cells to the sites of inflammation. Interestingly, because CXCR4 is also a co-receptor for HIV entry into CD4$^{+}$ T cells, there have been a number of efforts to develop receptor antagonists. These efforts also have spawned new research efforts in the use of CXCR4 antagonists for treatment of other immunologic pathologies. In this issue, the article by Mikami et al. describes a study in IBD patients and in a murine colitis model that sought to determine whether the CXCL12/CXCR4 axis has a role in IBD. It was found that CXCR4 expression in peripheral T cells was increased in patients with ulcerative colitis and that the increases were correlated with disease severity. Increased CXCL12 mRNA levels were also found in colonic mucosal biopsies from IBD patients with active disease. These findings were also seen in the murine colitis model, and selective expression of knocked-in green fluorescent protein-CXCL12 was observed in submucosal lesions. Furthermore, the severity of the pathology in the murine model was ameliorated with a CXCR4 antagonist. In the mouse, it was also found that the antagonist inhibited migration of regulatory T cells into the lesions and proximal tissues. Although a number of interesting questions about the balance of Th1 versus Th2 T cell participation in mediating the inflammatory response remain, these results firmly place the CXCL12/ CXCR4 axis in the etiology of IBD and that observation immediately suggests possible therapeutic interventions.