CONTENTS

NUMBER 1, AUGUST, 1925

I. Slowing and Block in the Heart Under Digitalis in Animals. By V. R. Cushy and K. Y. Yu 1
II. Effects of Quinidine on the Auricular Irritability and Conduction in the Terrapin’s Heart. By Arthur D. Hirschfelder and Charles Cervenka ... 19
III. Studies of Intoxication. III. The Action of Ethylene. By Bessie M. Davidson .. 27
IV. Studies of Intoxication. IV. The Action of Propylene. By Bessie M. Davidson .. 33
V. Studies of Intoxication. V. The Action of Ethyl Chloride. By Bessie M. Davidson .. 37
VI. Studies of Intoxication. VI. The Action of Methyl Ether. By Bessie M. Davidson .. 43
VII. The Excretion of Morphin into the Stomach. By Robert A. Hatcher and David Davis ... 49
VIII. The Salicylates. XV. Liberation of Salicyl from and Excretion of Salicyl Salicylate. By P. J. Hanzlik and N. E. Presho 61
IX. The Salicylates. XVI. Liberation of Salicyl from and Excretion of Methyl Salicylate, with a Note on the Irregular Toxicity of the Ester in Man. By P. J. Hanzlik and N. E. Presho 71

NUMBER 2, SEPTEMBER, 1925

X. The Effect of Ephedrine on Experimental Shock and Hemorrhage. By K. K. Chen .. 83
XI. A Preliminary Paper Concerning the Toxic Effect of Certain Alcoholic Beverages for the Kidney of Normal and Naturally Nephropathic Dogs. By Wm. deB. MacNider .. 97
XII. Studies of Intoxication. VII. The Effect of Caffeine. By Bessie M. Davidson .. 105
XIII. Studies of Intoxication. VIII. The Influence of Oxygen. By Bessie M. Davidson .. 111
XIV. An Experimental Study of Certain Benzyl Compounds with Special Attention to the Importance of Substitution in the Benzyl Nucleus and the Significance of the Side Chains. Herman H. Jensen 123
XV. I. The Action of Sparteine Sulphate on the Mammalian Heart. By J. Hamilton Crawford 171
XV. II. The Action of Sparteine Sulphate on Experimental Fibrillation of the Auricles. By J. Hamilton Crawford 181
CONTENTS

NUMBER 3, OCTOBER, 1925

XVII. A Proposed Standardized Method for the Therapeutic Study of Compounds in Experimental Rabbit Syphilis. By G. E. Wakerlin, W. F. Lorenz, and A. S. Loevenhart

XVIII. The Effect of Strophanthin on Pulsation Rate of the Dorsal Blood Vessel of Lumbricus Terrestris. By Charles L. Wible

XIX. Deficient and Surplus Consumption of Vitamine B: Their Quantitative Relation to Weight-Changes, and to Vitamine Storage, in Adult Pigeons. By J. D. Pilcher and Torald Sollmann

XX. The Pharmacology of the Isolated Vein Ring. By K. J. Franklin

XXI. The Action of Urethane on Involuntary Muscle. By K. J. Franklin

XXII. Relationship between Chemical Structure and Physiological Action. The Effect of 1-Suprarenin (Synthetic Epinephrine) and Various Derivatives upon the Blood Sugar of Normal Rabbits. By Harry E. Dubin, H. B. Corbitt and Louis Freedman

XXIII. The Influence of the Adrenals on the Toxicity of Morphine. By J. M. Rogoff and Jos. DeNecker

NUMBER 4, NOVEMBER, 1925

XXIV. On the Inactivation of Atropine Sulphate by Rabbit Serum. By Jean La Barre

XXV. Physiological Action of Furane. By Elizabeth M. Koch and Meyer H. Cahan

XXVI. The Effect of Sodium Arsenite on the Blood Sugar Concentration of the Rabbit and Dog. By H. B. van Dyke

XXVII. A Contribution to the Study of the Metabolism of Salicylic Acid. By E. G. Holmes

XXVIII. Skin Absorption of Certain Gases. By D. C. Walton and M. G. Witherspoon

NUMBER 5, DECEMBER, 1925

XXX. On the Active Principles of the Pituitary Extract. By H. H. Knaus

XXXI. The Action of Certain Drugs and Ions on the Rat's Uterus. By H. H. Knaus and A. J. Clark

XXXII. Oestrous Variations of Uterine Activity in the Rat. By A. J. Clark, H. H. Knaus and A. S. Parkes

XXXIV. The Mechanism of Vagus Inhibition as Produced by Adrenaline. By W. J. R. Heinekamp

NUMBER 6, JANUARY, 1926

XXXV. Chlorocodon Whiteii: Its Constituents and Their Pharmacological Actions. By Walter J. Dilling
By W. Koskowski. .. 413
XXXVII. Tannin Occurring in the Kino Eucalyptus Calophylla. By Alexander McGookin and I. M. Heilbron. 421
XXXVIII. Bacterial Chemotherapy with Special Reference to Mercury Dyes. By George W. Raiziss, M. Severac and John C. Moetsch. 447
XL. Morphine Miosis. By V. E. Henderson and R. W. Graham. 469
ILLUSTRATIONS

Myocarditis of dog's heart under strophanthin, showing occasional intermissions of the ventricle from partial A-V block (Fig. 1) 6
Half-rhythm at a later stage than figure 1 (Fig. 2) 7
Marked A-V block, the ventricle beating once to the auricle's 4 to 7 beats (Fig. 3) ... 8
—— sinus slowing with no A-V block in the first half of the tracing (Fig. 4) . 9
Partial block, with spontaneous ventricular beat interpolated during failure of conduction (Fig. 5) .. 10
Repeated extrasystoles in the ventricle during pauses in the auricle from inhibition (Fig. 6) ... 12
The auricle beating slowly from inhibition due to scillaren, while the ventricle has assumed more rapid spontaneous rhythm (Fig. 7) 13
Absence of fibrillation when maximal faradic stimuli are applied to the right auricle of the terrapin (Fig. 1) 20
Response of both auricles to interrupted stimuli (Fig. 2A) 22
—— of both auricles to interrupted stimuli (Fig. 2B) 23
Depression of irritability after quinidine (Fig. 3) 24
Graph showing reaction times with choice under different concentrations of ethylene (Fig. 1) ... 29
—— showing reaction times with choice under different concentrations of ethyl chloride (Fig. 1) ... 40
—— showing reaction times with choice during successive administrations of 2.5 per cent ethyl chloride (Fig. 2) 41
—— showing reaction times with choice under different concentrations of methyl ether (Fig. 1) ... 46
Liberation of salicyl from methyl salicylate in 'buffer' mixtures at 38°C at the end of one hour, six and twenty-four hours with and without pancreatine (Fig. 1) ... 72
Effect of ephedrine in histamine shock (Fig. 1) 85
—— of ephedrine in peptone shock (Fig. 2) 86
—— of ephedrine in anaphylactic shock (Fig. 3) 87
—— of ephedrine in surgical and traumatic shock (Fig. 4) 88
—— of ephedrine in hemorrhage (Fig. 5) 89
—— of ephedrine on peripheral circulation in histamine shock (Fig. 6) ... 90
—— of ephedrine on the heart in histamine shock (Fig. 7) 91
Graph showing simple reaction times after cessation of the inhalation of pure nitrous oxide to unconsciousness (Fig. 1) 106
—— showing the effect of 0.5 gram of caffeine on reaction times with choice (Fig. 2) ... 107
ILLUSTRATIONS

Graph showing reaction times with choice under 2.5 per cent ethyl chloride (Fig. 3) .. 108
— showing reaction times with choice (Fig. 4) 109
— showing reaction times with choice (Fig. 1) 114
— showing the effect of 40 per cent nitrous oxide + 12 per cent oxygen followed by 40 per cent nitrous oxide + 28 per cent oxygen on reaction times with choice (Fig. 2) .. 116
— showing the effect of 33 per cent acetylene + 20 per cent oxygen, and 33 per cent acetylene + 33 per cent oxygen on reaction times with choice (Fig. 3) .. 117
— showing reaction times with choice during the inhalation of 3.36 per cent ethyl chloride in air and 3.36 per cent ethyl chloride in oxygen (Fig. 4) ... 120
Blood pressure and respiration. Dialcohol p-cresol. Rabbit—ether anesthesia (Fig. 1) .. 136
— pressure and respiration. Alcohol salicylaldehyde. Rabbit—ether anesthesia (Fig. 2) .. 137
Antispasmodic action. Alcohol p-oxy-benzaldehyde. Intestinal segments—rabbit .. 146
— action. Thymotinic alcohol. Intestinal segments—rabbit (Fig. 4) 147
Diagram (Fig. 5) .. 160
Myocardiograms from the auricle and ventricle and blood pressure tracing (Fig. 1) .. 183
— from the auricle and ventricle and blood pressure tracing (Fig. 2) .. 184
Healing power of neoarsphenamine in experimental rabbit syphilis (Fig. 1) .. 189
— power of sodium salt of 3, 3', 4, 4'-tetraamino-arsenobenzene tetramethylene sulphinic acid in experimental rabbit syphilis (Fig. 2) .. 190
Average percentage weight of pigeons by groups according to yeast extract doses; polished rice diet (Fig. 1) 205
Percentage weight loss or gain at end of twenty-one days of yeast extract administration, arranged by groups, according to dosage (Fig. 2) .. 206
Average percentage weight of pigeons by groups during the vitamine and avitamine periods; polished rice diet throughout (Fig. 3) .. 207
— percentage weight of pigeons by groups during vitamine and avitamine periods; polished rice diet throughout (Fig. 4) .. 208
Mesenteric vein ring (sheep), showing rhythmic movements (Fig. 1) .. 217
— vein ring (sheep) (Fig. 2) .. 218
— vein rings (sheep) (Figs. 3 and 4) .. 219
— vein rings (ox) (Figs. 5 and 6) .. 221
— vein rings (sheep) (Figs. 7, 8, 9, 10, 11 and 12) .. 222
— vein ring (ox) (Fig. 1) .. 228
Small intestine (rabbit) (Fig. 2) .. 229
Intraluminal bronchus ring (sheep) (Fig. 3) .. 229
Bladder (rabbit) (Fig. 4) .. 230
Spleen (rabbit) (Fig. 5) .. 231
Chart showing distribution of deaths, within four weeks, following adrenalectomy (Fig. 1) .. 247
— showing distribution of deaths of a group of rats (Fig. 2) .. 248
ILLUSTRATIONS

Chart showing the effect of 0.4 mgm. pilocarpine nitrate alone on normal intestine; the effect of same dose of pilocarpine nitrate on pieces of intestine treated previously with 0.01 mgm. atropine; and the effect of same dose of pilocarpine after 0.008 mgm. atropine (Fig. 1) 264
— showing average tonic variations after addition of 0.4 mgm. of pilocarpine nitrate to Ringer solution in which were suspended pieces of intestine treated previously by different quantities of extracted atropine (Fig. 2). 265
— showing tonic variation after addition of 0.4 mgm. pilocarpine nitrate to Ringer solution in which are suspended intestinal pieces treated previously by different quantities of atropine solution extracted from serum (Fig. 3) 266
— of the relation of inactivation of atropine with the duration of contact with serum (Fig. 4) 272

Abscissa, temperature to which the mixture serum-atropine was exposed for two hours (Fig. 5) 272

Cat, weighed 3.5 kgm., intravenous injection of extract equal to 1 mgm. of moist gland (Fig. 1) 338
—, weight 2.5 kgm. (Fig. 2) 340
Virgin cat, weight 2 kgm. (Figs. 3, 4 and 5) 342
— cat, weight 3 kgm., intramuscular injection of extract equal to 1 mgm. (0.2 cc. fluid) of moist gland (Fig. 6) 344

Cat, weight 3.5 kgm. (Figs. 7 and 8) 345

The action of adrenalin on the rat’s uterus (Fig. 1) 348
— action of adrenalin and pituitary extract on conduction in the rat’s uterus (Fig. 2) 350
— action of pituitary extract on the rat’s uterus (Fig. 3) 352

Movements of same uterus (1) in situ and (2) isolated (Fig. 1) 360
— of the same uterus (1) isolated and (2) in situ (Fig. 2) 362

Diagram showing method of recording contractions of uterus from three leads simultaneously (Fig. 3) 364

Movements of same uterus in situ and isolated (Fig. 4) 365
Records of the movements of three different isolated uteri (Fig. 5) 368

Results of a comparative study on hypnotics of the barbituric acid series (Charts 1 and 2) 380, 381
Effect produced by stimulation of right vagus before and after eserine (Fig. 1) 386
Sections from an adrenalin curve before section of vagi and eserine (Fig. 2) 388
— from adrenalin curve after section of vagi nerves (Fig. 3) 389

Adrenalin curve after section of vagi and atropine (Fig. 4) 389
Inhibition produced by 1 cc. 1:10,000 adrenalin given intravenously (Fig. 5). 390
— produced by 1 cc. 1:10,000 adrenalin plus vagus stimulation (Fig. 6) 390
— produced by adrenalin (Fig. 7) 391
— produced by adrenalin plus vagus stimulation (Fig. 8) 391

Chloroecodon Whiteii. Action of volatile oil (1:3000) on rabbit intestine (Fig. 1) 401
Action of chloroecodon glucoside 0.1 per cent on frog heart (Fig. 2) 404
— of chloroecodon glucoside on frog heart (Fig. 3) 406
— of chloroecodon glucoside 1 per cent on frog’s hyoglossus (Fig. 4) 409