CONTENTS

NUMBER 1, FEBRUARY, 1925

I. Insulin and Liver Glycogen. By Carl F. Cori ... 1
II. The Pharmacological Action of Cryptopine. By Reginald St. A. Heathcote 35
III. Potassium Chlorate: Its Influence on the Blood Oxygen Binding Capacity (Hemoglobin Concentration), Its Rate of Excretion and Quantities Found in the Blood After Feeding. By Victor Ross 47
VI. The Nephropathic Action of the Dicarboxylic Acids and Their Derivatives. IV. Mucic Acid. By William C. Rose and Pauline S. Dimmitt. 65
VII. The Influence of Calcium and Potassium on the Response of the Isolated Frog Heart to Epinephrin. By William Salant, Henry Washeim, Jr., and Robert L. Johnston ... 75

NUMBER 2, MARCH, 1925

VIII. Studies of Intoxication. I. The Action of Nitrous Oxide. By Bessie M. Davidson 91
IX. Studies of Intoxication. II. The Action of Acetylene. By Bessie M. Davidson 119
X. Scientific Proceedings of the American Society for Pharmacology and Experimental Therapeutics. Edited by E. D. Brown ... 137

NUMBER 3, APRIL, 1925

XI. The Action of Quinine on Protein Metabolism, Respiratory Exchange and Heat Function. II. Respiratory Exchange and Heat Function. By S. W. Hardikar ... 175
XII. I. The Effect of Phenobarbital (Luminal) and Sodium Phenobarbital (Luminal-Sodium) upon Blood Pressure and Respiration. By Charles M. Gruber and Roy F. Baskett 219
XIII. A Quantitative Study of the Absorption and Excretion of the Anthelmintic Dose of Carbon Tetrachloride. By Herbert S. Wells 235

NUMBER 4, MAY, 1925

XIV. The Relation of Dosage to Effect. II. By L. F. Shackell 275
XV. The Action of Alcohol on the Circulation. By R. J. S. McDowall 289
CONTENTS

XVII. The Mechanism of the Action of Antipyretic Drugs. By Thomas Stotesbury Githens .. 309
XVIII. On Some Effects of Arsonium, Stibonium, Phosphonium and Sulfonium Compounds on the Autonomic Nervous System. By Reid Hunt and R. R. Renshaw .. 315

NUMBER 5, JUNE, 1925

XIX. The Effect of the Administration of Desiccated Red Bone Marrow and Spleen on the Resistance of Erythrocytes to Hypotonic Saline Solutions in Dogs. By Chauncey D. Leake and Emmett F. Guy 357
XX. The Binding Power of Serum for Drugs Tested by a New In Vitro Method. By R. Beutner .. 365
XXI. Blood Chemistry in Acute Histamine Intoxication. By Hirotoshi Hashimoto .. 381

NUMBER 6, JULY, 1925

XXIV. The Liberation of Adsorbed Substances from Proteins. A Function of the Bile Salts. By Sanford M. Rosenthal 449
XXV. Urinary Excretion of Tartrates Following Administration to Animals. By George Eric Simpson .. 459
XXVI. The Pharmacological Behavior of Malic Acid and its Salts. By Frank P. Underhill and George T. Pack 467
ILLUSTRATIONS

Toad heart perfused with cryptopine, 1:100,000 (Fig. 1a) 40
— heart perfused with papaverine, 1:100,000 (Fig. 1b) 40
Frog heart perfused with Ringer's solution, then with Ringer containing
1:50,000,000 epinephrin (Fig. 1) .. 80
— heart perfused with Ringer's solution, then with Ringer containing
1:50,000,000 epinephrin (Fig. 2) .. 81
— heart perfused with Ringer's solution, then with Ringer containing
1:50,000,000 epinephrin (Fig. 3) .. 83
— heart perfused with Ringer's solution, then with Ringer containing
1:50,000,000 epinephrin (Fig. 4) .. 87
Graph showing effect of successive administrations of nitrous oxide on simple
reaction times (Fig. 1) .. 98
— showing simple reaction times during recovery from mild (A), and
severe (B) intoxication with nitrous oxide (Fig. 2) 100
— showing reaction times with choice under different concentrations of
nitrous oxide (Fig. 3) .. 102
— showing the effect of 30 per cent nitrous oxide on muscular work after
five-second periods of rest (Fig. 4) 106
— showing effect of different concentrations of nitrous oxide on accuracy
of muscular movement as indicated by pricking experiments (Fig. 5). 110
— showing improvement in accuracy of muscular movement during
recovery from mild (A) and moderate (B) intoxication with nitrous
oxide (Fig. 6) .. 111
— showing effect of different concentrations of nitrous oxide on the
estimation of ten-second periods (Fig. 7) 116
— indicating the course of intoxication, with concentrations producing
unconsciousness, of nitrous oxide and acetylene respectively (Fig. 1). 120
— showing the effect of varying concentrations of acetylene on simple
reaction time (Fig. 2) .. 123
— showing reaction times with choice under different concentrations of
acetylene (Fig. 3) .. 125
— showing an effect of 30 per cent acetylene on choice reaction time
(Fig. 4) .. 126
— showing comparative effects of 10 per cent acetylene and 10 per cent
nitrous oxide on the accuracy of muscular movement (Fig. 5) 128
— of times taken to type a sentence involving 72 movements during the
inhalation of 25 per cent acetylene (Fig. 6) 130
— showing reaction times with choice during successive administrations
of 33 and 25 per cent acetylene respectively (Fig. 7) 134
Haldane's respiration apparatus used in the observations on animals
(Fig. 6) .. 180

v
ILLUSTRATIONS

Apparatus used for observing surface temperature (Fig. 7) .. 181
Ether anesthesia. Dog, 18 kgm. (Fig. 1) ... 224
— anesthesia. Dog, 18 kgm. (Fig. 2) ... 224
— anesthesia. Dog, 18 kgm. (Fig. 3) ... 226
— anesthesia. Dog, 6 kgm. (Fig. 4) ... 227
Urethane anesthesia. Rabbit, 2.5 kgm. (Fig. 5) .. 229
— anesthesia. Rabbit, 2 kgm. (Fig. 6) ... 231
Paraldehyde anesthesia. Dog, 9.5 kgm. (Fig. 7) ... 232
— anesthesia. Dog, 9.5 kgm. (Fig. 8) ... 232
Composite curve of the absorption of 3 cc. of CCl₄ from isolated intestinal loops of dogs (Fig. 1) ... 246
Diagram showing the effect of adding (a) alcohol in various concentrations, and (b) saturated solution of MgSO₄ on the absorption of 3 cc. of CCl₄ from isolated intestinal loops of dogs (Fig. 2) ... 250
— of apparatus used to recover CCl₄ from the expired air (Fig. 3) 260
Three experiments on dogs, showing the rapidity with which CCl₄ is excreted in the expired air after absorption from the intestinal tract (Fig. 4) 262
Two experiments on man showing the rapidity of excretion of CCl₄ in the expired air following the administration of the drug into the upper intestinal tract (Fig. 5) ... 266
Limnoria in ethyl alcohol (Fig. 1) ... 277
— in ethyl alcohol (Fig. 2) ... 278
— in ethyl alcohol (Fig. 3) ... 279
Toad larvae in phenol (Fig. 4) ... 281
— larvae in phenol (Fig. 5) ... 283
— larvae in cocaine-HCl (Fig. 6) ... 284
Artemia in HCl (Fig. 7) ... 285
— in n/10 H₃PO₄ (Fig. 8) ... 286
Cat, chloralose (Fig. 1) ... 291
— chloralose (Fig. 2) ... 292
— intravenous injection of 5 mgm. tetramethylphosphonium iodide (Fig. 1) ... 322
— intravenous injection of 0.5 mgm. trimethylsulfonium iodide (Fig. 2) 323
— intravenous injection of 10 mgm. tetramethylphosphonium iodide (Fig. 3) ... 327
— injection of 5 mgm. trimethylsulfonium iodide (Fig. 4) 327
Total urinary nitrogen of cases treated with lithium, sodium, magnesium, strontium, potassium and calcium iodides, “Lugol’s” solution and Sajodin (Fig. 1) ... 413
Effect of calcium and potassium iodides on the distribution of values for the non-protein nitrogen of the blood (Fig. 2) ... 415
— of sodium, lithium and strontium iodides on the blood and urine using the same notation as figure 2 (Fig. 3) ... 415
Two tubes containing 5 mgm. of high grade insulin treated for sulphur content (Fig. 1) ... 437
— tubes containing 5 mgm. of cystine treated for sulphur content (Fig. 2) 438
Influence of sodium malate upon the movement of a strip of cat’s intestine (Fig. 1) ... 475