CONTENTS

NUMBER 1, FEBRUARY, 1923

I. Studies on the Pharmacology of Cadmium and Zinc with Particular Reference to Emesis. By Erich W. Schwartze and Carl L. Alsberg...................... 1
II. The Carbon Monoxide Content of Tobacco Smoke and Its Absorption on Inhalation. By J. Percy Baumberger.................. 23
III. The Nicotine Content of Tobacco Smoke. By J. Percy Baumberger.......... 35
IV. The Amount of Smoke Produced from Tobacco and Its Absorption in Smoking as Determined by Electrical Precipitation. By J. Percy Baumberger.. 47
VI. The Action of Furfural. By Hugh McGuigan.............................. 65

NUMBER 2, MARCH, 1923

VII. The Action of Certain Depressant Drugs on the Sensory Threshold for Faradic Stimulation in Human Subjects and the Effect of Tobacco Smoking on this Action. By W. Hale and G. P. Grabfield...................... 77
IX. On the Sensitivity of Different Nerve Endings to Atropine. By V. E. Henderson.. 99
X. On the Active Principles of the Pituitary Gland. By Harold Ward Dudley... 103
XI. Comparative Toxicity of Inorganic Lead Compounds and Metallic Lead for Pigeons. By P. J. Hanzlik and Elizabeth Presho.................... 123
XII. Therapeutic Efficiency of Various Agents for Chronic Poisoning by Metallic Lead in Pigeons. By P. J. Hanzlik and Elizabeth Presho........ 131
XIII. Comparative Toxicity of Metallic Lead and Other Heavy Metals for Pigeons. By P. J. Hanzlik and Elizabeth Presho.......................... 145
XIV. The Biological Action of Potassium, and Its Radio Activity. By H. Zwaardemaker.. 151

NUMBER 3, APRIL, 1923

XV. On the Detection of Benzene in Cadavers. By Alexander O. Gettler........ 161
XVI. A Study of the Rate of Deposition and Paths of Absorption of Strontium in the Rat. By Ethel May Kinney and E. V. McCollum................ 165
XVII. The Action of Camphor, Menthol and Thymol on the Circulation. By Reginald St. A. Heathcote................................. 177
XVIII. Scientific Proceedings of the American Society for Pharmacology and Experimental Therapeutics.......................... 191
CONTENTS

NUMBER 4, MAY, 1923

XIX. The Intra-hepatic Administration of Drugs. By J. A. Waddell 225
XX. Does the Reaction to Adrenalin Obey Weber's Law? By D. Murray Lyon 229
XXI. The Toxicity of Carbon Tetrachloride: In Relation to Liver Function as Tested by Phenol-tetrachlorphthalein. By Paul D. Lamson and A. J. McLean 237
XXII. The Salicylates. XIV. Liberation of Salicyl from and Excretion of Acetylsalicylic Acid. By P. J. Hanzlik and Elizabeth Presho 247

NUMBER 5, JUNE, 1923

XXIII. On the Entrance of Convulsant Dyes into the Substance of the Brain and Spinal Cord after an Injury to these Structures. By H. C. Syz 263
XXIV. The Effect of Quinine Intoxication on the Respiratory Center of the Rabbit. By H. Sugata and A. L. Tatum 293
XXV. Experimental Research on the Distribution and Elimination of Organic Arsenic Compounds after Intravenous Administration. By F. M. R. Bulmer 301
XXVI. Histological Changes Produced Experimentally in Rabbits by Bismuth. By Baldwin Lucke and Joseph V. Klauder 313
XXVII. Barbital Narcosis and Hypothermia in Pigeons. By Max M. Ellis 323
XXVIII. The Respiratory Exchange and Blood Sugar Curves of Normal and Diabetic Subjects after Epinephrin and Insulin. By Richard S. Lyman, Elizabeth Nicholls and Wm. S. McCann 343
XXIX. The Role of the Liver in the Removal of Hemoglobin from the Blood Stream. By Sanford M. Rosenthal 367

NUMBER 6, JULY, 1923

XXX. The Free Sugar Content of the Liver and Its Relation to Glycogenesis and Glycogenolysis. By Carl F. Cori, G. T. Cori and G. W. Pucher 377
XXXI. Notes on the Pharmacology and Therapeutics of Oil of Chenopodium and Investigations on the Anthelmintic Value of Its components. By Daniel M. Molloy 391
XXXIII. Bio-physical Studies of the Effects of Various Drugs upon the Temperature of the Brain and the Liver. By George W. Crile, Amy F. Rowland and S. W. Wallace 429
XXXIV. A Pharmacological and Clinical Examination of Benzyl Mandelate. By David I. Macht 443
ILLUSTRATIONS

Apparatus for the absorption of CO in tobacco smoke (Fig. 1) 25
Nicotine absorption apparatus (Fig. 1) 37
Diagram of smoke precipitation (Fig. 1) 49
Diagram of the electrical connections of the smoke precipitator (Fig. 2) 50
Photograph of smoke precipitator with cigarette in position for determining total smoke (Fig. 3) 51
View of precipitator showing electrical connections (Fig. 4) 51
Intoxication by cadmium chloride (Chart 1) 61
Intoxication by cadmium chloride (Chart 2) 62
Intoxication by cadmium chloride (Chart 3) 63
Action of drugs on faradic stimulation (Fig. 1) 80
Action of drugs on faradic stimulation (Fig. 2) 81
Action of drugs on faradic stimulation (Fig. 3) 82
Action of drugs on faradic stimulation (Fig. 4) 83
Influence of lecithin and kephalin on blood pressure (Fig. 1) 88
Influence of lecithin and kephalin on the hypodynamic frog heart (Fig. 2) 89
Activity of the picrotin on uterine muscle after recrystallization from 50 per cent alcohol (Fig. 1) 112
Comparison of fraction A with histamine (oxytocic activity) (Fig. 2) 114
Comparison of uterine activities of A and R (Fig. 3) 114
Effect of A and R on the blood pressure (Fig. 4) 116
Effect of A and R on the blood pressure (Fig. 5) 116
Extraction of A by butyl alcohol; distribution of oxytoxic principle (Fig. 6) 117
Extraction of A by butyl alcohol; distribution of pressor principle (Fig. 7) 117
The comparative solubility of lead in low concentrations of various salts in 0.2 per cent hydrochloric acid (A), and in 0.2 per cent hydrochloric acid and food (B), in vitro at 38°C. (Fig. 1) 141
Failure of paradoxon in the morning, appearance in the afternoon, in the same frog heart (Fig. 1) 155
Contractions of the uterus of a white mouse (Fig. 2) 157
Frog heart perfused with thymol, 1/200,000 (Fig. 2) 182
Frog heart perfused with menthol, 1/20,000 (Fig. 1) 182
Tracing showing the action of chloral, 1/2,000, both with and without camphor, 1/10,000 (Fig. 3) 183
Rabbit heart perfused with camphor, 1/5,000 (Fig. 4) 184
Rabbit heart perfused with thymol, 1/25,000 (Fig. 5) 184
Tracing showing the action of camphor injected subcutaneously in a decerebrate cat (Fig. 6) 187
ILLUSTRATIONS

Tracing showing the result of injecting camphor in solution in olive oil intravenously in the decerebrate cat (Fig. 7) 188
Intra-hepatic administration of drugs (Fig. 1) 227
Intra-hepatic administration of drugs (Fig. 2) 227
Reaction to adrenalin (Fig. 1) ... 232
Blood pressure tracing (Fig. 2) ... 233

Showing retention of dye in three dogs given a single dose of carbon tetrachloride (4 cc./kilo) (Fig. 1) 241
Showing no retention of dye in three dogs given a single dose of carbon tetrachloride (2 cc./kilo) (Fig. 2) 243
Showing no retention of dye in three dogs given 4 cc./kilo of carbon tetrachloride, divided into two 2 cc./kilo doses administered forty-eight hours apart (Fig. 3) ... 244

Liberation of salicyl from, or decomposition of, acetylsalicylic acid (0.1 per cent) in phosphate and citric-phosphate “buffer” solutions at 38° C. at the end of one hour, eighteen and twenty-four hours (Fig. 1) 249

Shows the striking difference in the absorption of convulsant dyes into the intact and into the injured nervous system (Fig. 1) 291
Shows the rate of excretion of arsenic in urine of dogs A and B (Graph 1) ... 305
Shows the excretion of arsenic in the feces of dogs A and B (Graph 2) ... 306
Shows the effect of successive doses of arsenic on the excretion (Graph 3) ... 307

Shows the difference in the amount of arsenic in the feces of a dog with biliary fistula and a normal dog (Graph 4) 308

Analyses of the urine, and the bile and urine of the dogs represented in graph 4 (Graph 5) ... 309

Kidney: necrosis of epithelium of convoluted tubules (Fig. 1) 316
Kidney: Necrosis of many convoluted tubules, and encrustation with calcium salts of necrotic portions (Fig. 2) 318
Kidney: Necrosis and calcification of many convoluted tubules (Fig. 3) 319
Kidney: Marked necrosis and calcification of convoluted tubules (Fig. 4) 319

Massed temperature responses of 14 adult pigeons to doses of barbital varying from 100 to 343 mgm. per kilo of body weight (Chart 1) 328

Daily body temperatures and body weights of pigeons in barbital narcosis compared with those of control pigeons (Chart 2) 334

0.5 cc. epinephrin in normal subjects (Chart 1) 346
0.5 cc. epinephrin on a diabetic patient, showing decrease of blood sugar (Chart 2) ... 349

Epinephrin and insulin in a severe diabetic subject, complicated with pulmonary tuberculosis (Chart 3) 352
Epinephrin and insulin in a diabetic patient (Chart 4) 354

Comparison of the effect of 10 units of insulin on blood sugar in a diabetic patient three days after admission and after a period of clinical improvement (Chart 5) 355

0.5 cc. epinephrin and 3½ units of insulin in a normal subject who is sensitive to epinephrin (Chart 6) 357

0.5 cc. epinephrin and 3½ units of insulin in a normal subject who is relatively insensitive to epinephrin (Chart 7) 358
Graphical picture of the increased percentage of total calories produced in
2 normal subjects by epinephrin and insulin, given alone and in combi-
nation (Chart 8) .. 359
0.5 cc. epinephrin and 34 units of insulin in a normal subject (Chart 9) ... 360
0.5 cc. epinephrin and 34 units of insulin in a normal subject (Chart 10) .. 361
0.5 cc. epinephrin and 10 units of insulin in a diabetic subject (Chart 11) . 362
0.5 cc. epinephrin and 10 units of insulin in a diabetic subject (Chart 12) . 363
Disappearance of hemoglobin from the blood stream in normal rabbits
(Fig. 1) .. 371
Rate of departure of hemoglobin from the blood stream in rabbits before and
after ligation of the main liver (Fig. 2) 372
Departure of hemoglobin from the blood stream before and after ligation of
the main liver (Fig. 3) ... 373
Phenoltrichlorphthalein liver function test in normal rabbits and in those
with the main liver ligated (Fig. 4) 374
Abdominal window (Fig. 1) ... 379
A composite curve taken from figure 1, Lamson and Roca, showing the hemo-
globin concentration curve after the injection of 25 cc. of 0.8 per cent
NaCl in exactly ten minutes (Fig. 1) 403
From Lamson and Roca, showing the effect of the addition of 0.9 mgm. of
epinephrine per kilo to the salt solution injected (Fig. 3) 404
Curves showing the effect of the addition of 0.9 mgm. of epinephrine per
cilo to the salt solution injected (20 per cent less than the standard
amount to allow for the blood removed in shutting off the liver
(Fig. 4) .. 404
Curves 1, 2, 3 and 4 show the effect of the addition of 3.0, 0.1, 0.01, and 0.03
mgm. of histamine phosphate per kilo, respectively, to the salt solution
injected (Fig. 5) ... 406
Two curves showing the effect of 1.8 mgm. per kilo of histamine phosphate
after removal of the liver (Fig. 6) 407
Curves showing the effect of the addition of 0.7 cc. of a 1 per cent solution of
barium chloride per kilo to the salt solution injected (Fig. 7) 407
Curves showing the effect of 0.15 cc. per kilo of Armour's pituitary liquid to
two dogs in the customary amount of salt solution (Fig. 8) 407
Curves obtained after the injection of 2 cc. per kilo of Armour's pituitary
liquid with the usual amount of salt solution (Fig. 9) 408
Curves taken after injection of epinephrine (0.9 mgm. per kilo) and Armour's
pituitary liquid (2 cc. per kilo) with the usual amount of salt solution
(Fig. 10) .. 408
Curves showing the effect of histamine phosphate, 1.8 mgm. per kilo, and
Armour's pituitary liquid, 2 cc. per kilo, in the hemoglobin concentra-
tion curve when injected in the standard amount of salt solution
(Fig. 11) .. 409
Four curves of hemoglobin concentration after the injection of 2 cc. of
Armour's pituitary liquid alone (Fig. 12) 409
Curves 1, 2, and 3 are plotted from plasma protein concentrations after the
injection of 2 cc. per kilo of Armour's pituitary liquid in 25 cc. of salt
solution per kilo. Curves 4 and 5 show the changes in concentration of
another substance, vital red injected twenty-four hours previously after the injection of pituitrin. Curve 6 is the plasma protein curve after the injection of saline alone. Curve 9 is the epinephrine and saline curve and curves 7 and 8 are histamine and saline curves (Fig. 13).

Series of curves to compare a curve of volume change represented by plasma volume determinations done by the Keith, Rowntree and Geraghty method, and volume change as indicated by plotting hemoglobin concentration (Fig. 14).

In this experiment 5 grams glucose per kilo were intravenously injected in a concentrated solution, and the volume curves plotted as before by the dye and hemoglobin methods (Fig. 15).

Shows six curves all of which show a downward trend representing a decrease in blood volume (Fig. 16).

These curves were obtained by the dye and hemoglobin methods after the addition of large amounts of Armour's pituitrin to the salt solution injected (Fig. 17).

Portal and cava pressures after the injection of 2 cc. per kilo of Armour's pituitary liquid in 25 cc. of 0.8 per cent NaCl solution per kilo (Figs. 18 and 19).

Portal and cava pressures with 5 drops spirits of nitroglycerin per kilo and 10 mgm. per kilo of sodium nitrite in 25 cc. of salt solution per kilo (Figs. 20 and 21).

Curves showing the effect on venous pressure of 1.8 mgm. of histamine phosphate in 25 cc. of 0.8 per cent NaCl per kilo (Figs. 22 and 23).

Venous pressures with 0.7, 1.0, 0.8 and 0.35 cc. of 2 per cent NBAaCl per kilo in curves 23, 27, 29 and 31 respectively in 25 cc. of 0.8 per cent NaCl per kilo (Figs. 24 and 25).

Venous pressures with 0.9 mgm. of epinephrin per kilo and 2 cc. of Armour's pituitary liquid per kilo in 25 cc. of 0.8 per cent NaCl per kilo (Figs. 26 and 27).

Curves showing the effect of shutting off the arterial blood supply to the liver, on the hemoglobin concentration curves after the injection of 25 cc. per kilo of 0.8 per cent NaCl with the addition of epinephrin 0.9 mgm. per kilo, curves 126, 129 and 137 histamine 1.8 mgm. per kilo, curves 131, 135, and saline alone in curves 139 and 141 (Fig. 30).

Curve showing the portal pressure in 2 dogs after the injection of 0.9 mgm. of epinephrin per kilo after ligation of the hepatic artery (Fig. 31).

Effect of the injection of adrenalin on the temperature of the brain and of the liver of animals which had received a previous dose of strychnine (Fig. 1).

Effect of the injection of strychnin upon the temperature of the brain and of the liver (Fig. 2).

Effect of the injection of adrenalin in a morphinized animal (Fig. 3).

Effect of the injection of adrenalin upon the temperature of the brain and of the liver in an animal which had received preceding doses of atropin (Fig. 4).
The effect of alcohol upon the temperature of the brain and of the liver, and of the injection of adrenalin in animals which had received preceding doses of alcohol (Fig. 5) 440

The comparative effects of the injection of adrenalin upon the temperature of arterial (carotid) and venous (jugular) blood (Fig. 6) 441

Uterus of a guinea-pig, stimulation with pituitary liquid and relaxation with benzyl mandelate (Fig. 1) 445

Small intestine of rabbit, stimulation with pilocarpin hydrochloride, relaxation with benzyl mandelate (Fig. 2) 446

Small intestine of rat, stimulation with pilo-carpin hydrochloride, relaxation with benzyl mandelate (Fig. 3) 447

Muscle strip from human uterus, contracted by ergotoxin and relaxed by benzyl benzoate (Fig. 4) 448

Muscle strip from human gall bladder, stimulation by morphine, marked contraction, relaxation by benzyl mandelate (Fig. 5) 449

Blood pressure curve in the rabbit under paraldehyde anesthesia, showing the effect of benzyl mandelate injected intravenously (Fig. 6) 450

Rabbit under paraldehyde anesthesia. Effect on respiration and blood pressure of benzyl mandelate introduced into the stomach (Fig. 7) 451