CONTENTS

Number 1, August, 1922

II. On Rhododendron Poisoning. By S. W. Hardikar 17

III. The Relation of Histamine to Intestinal Intoxication. II. The Absorption of Histamine from the Intestine. By Jonathan Meakins and Charles Robert Harington 45

Number 2, September, 1922

V. Quantitative Studies in Chemotherapy. VI. Rate of excretion of Arsenicals, a Factor Governing Toxicity and Parasiticidal Action. By Carl Voegtlin and J. W. Thompson 85

VI. The Mechanism of the Straub Biologic Test for Morphine. By W. J. R. Heinekamp ... 107

VII. Ipecac in the Treatment of Blackhead in Turkeys. By H. W. Graybill. 115

VIII. Effect of Adrenalin and Extracts of Pancreas and Liver on Flood Dextrose. By Ellison L. Ross and Lloyd H. Davis 121

IX. Quantitative Studies in Chemotherapy. VII. Effect of Ligation of the Ureters or Bile Duct upon the Toxicity and Trypanocidal Action of Arsenicals. By Carl Voegtlin, Helen A. Dyer, and Dorothy Wright Miller ... 129

Number 3, October, 1922

XI. A Study of the Colloidal Properties of Arsphenamine and Allied Products. By George W. Raiziss and Joseph L. Gavron 163

XII. The So-called Habituation to “Arsenic”: Variation in the Toxicity of Arsenious Oxide. By Erich W. Schwartz. 181

XIII. A Chemical Method of Assaying the Active Principles of Digitalis. By Arthur Knudson and Melvin Dresbach 205

XIV. The ÐEdema of Para-phenylenediamine, By O. S. Gibbs 221
CONTENTS

NUMBER 4, NOVEMBER, 1922

XVI. Studies on the Action of Barium. By William Salant and Nathaniel Kleitman ... 247
XVII. The Comparative Concentrations of Alcohol in Human Blood and Urine at Intervals after Ingestion. By Walter R. Miles 265

NUMBER 5, DECEMBER, 1922

XVIII. The Effect of Epinephrine on Excised Strips of Frogs' Digestive Tracts. By Charles M. Gruber 321
XIX. The Action of Morphine on the Vomiting Center in the Dog. By Chauncey D. Leake ... 359
XX. Naturally Nephropathic Animals. The Ability of an Alkaline Solution to Influence the Amount of Stainable Lipoid Material that Appears in the Kidney following the Use of a General Anesthetic. By Wm. deB. MacNider ... 365
XXI. Picrotoxin Hyperglycemia. By Arthur L. Tatum 385
XXII. The Action of Quinine on Sugar Mobilization with its Bearing on the Question of Glycogenolysis. By A. L. Tatum and R. A. Cutting 393

NUMBER 6, JANUARY, 1923

XXIII. The Importance of the Adrenal Glands in the Action of Pilocarpine, Physostigmine and Strychnine. By Charles W. Edmunds 405
XXIV. An Investigation into the Chemotherapy of the Acridine Dyes in Experimental Tuberculosis. By Maurice I. Smith 419
XXV. Toxicity and Actions of the Normal Butylamins. By P. J. Hanzlik. 435
XXVI. The Pharmacological Properties of Some Iso-urea Derivatives. By Steward Basterfield ... 451
XXVII. The Comparative Stimulant Efficiency of Some Local and Systemic Agents on Normal and Depressed Respiration, and Irritant Efficiency of Some Agents. By P. J. Hanzlik ... 463
XXVIII. Studies on the Pharmacology of Sodium Citrate. I. The Influence of Sodium Citrate on Respiration and Circulation. By William Salant and Nathaniel Kleitman 481
ILLUSTRATIONS

Augmentor action of kephaline on pilocarpine action (Fig. 1) 5
Pure lecithin on pilocarpine action (Fig. 2) ... 6
Concentration-action curve of pilocarpine (Fig. 3) 10
— curve of histamine (Fig. 4) ... 11
— curve of choline (Fig. 5) ... 11
Action of various doses of pilocarpine on isolated gut (Fig. 6) 12
— of various doses of choline on the isolated gut (Fig. 7) 12
Augmentor influence of lecithin on histamine action (Fig. 8) 13
Stimulating action of kephaline (Fig. 9) ... 14
Cat, 2000 grams; paraldehyde anesthesia; tracheotomy (Fig. 1) 26
Perfusion of the lungs of rabbit with 1:1,000,000 andromedotoxin in gum-
Ringer (Fig. 2) ... 28
Tracing of frog heart in situ (Fig. 3) .. 32
Perfusion of isolated rabbit’s heart (Fig. 4) .. 33
— of frog heart in situ (Fig. 5) .. 33
Tracings of uterus, respiration and blood pressure (Fig. 1) 48
— of respiration and blood pressure (Fig. 2) ... 49
— of uterus; respiration and blood pressure (Fig. 3) 50
— of respiration and blood pressure (Fig. 4) ... 51
— of respiration and blood pressure (Fig. 5) ... 52
— of respiration and blood pressure (Fig. 6) ... 57
— of uterus, respiration and blood pressure (Fig. 7) 58
— of uterus, respiration and blood pressure (Fig. 8) 58
— of blood pressure (Fig. 9) .. 61
— of blood pressure (Fig. 10) .. 61
— of blood pressure (Fig. 11) .. 61
— of blood pressure (Fig. 12) .. 62
Comparative action on the guinea pig's uterus, suspended in 40 cc. Locke
solution, of the solution (0.000354 mgm. organic matter per cc.) obtained
by decomposing the mercuric chloride cake (experiment III) and of
histamine phosphate (0.01 mgm. per cc.) (Fig. 1) 68
Effect on the blood pressure of a dog of an intravenous injection of a small
portion (about 1/6) of the entire filtrate, after removal of the mercury,
from the proteid-mercuric chloride cake from 100 grams fresh glands (Fig. 2) ... 72
Shows the powerful action of the pituitary picrate as compared with the
dipicrate of histamine on the uterus of the virgin guinea pig (Fig. 3) 74
One-half horn of the uterus of the virgin guinea pig in Tyrode's solution
(Fig. 4) ... 75
Effect of repeated injections of a solution of the pressor-oxytocic principle
made from the proteid-mercuric chloride cake (Fig. 5) 77
Shows the effect of repeated injections of the same solution of the pressor-oxytoic principle used in the injections in figure 5 (Fig. 6)............. 78
— effect of first, second and third injections of a pressor phosphate (Fig. 7). 79
Quantitative studies in chemotherapy (Chart 1)............................... 93
— studies in chemotherapy (Chart 2).. 94
— studies in chemotherapy (Chart 3).. 95
— studies in chemotherapy (Chart 4).. 96
— studies in chemotherapy (Chart 5).. 102
Epinephrine assay of extract of right adrenal of rabbit XIII and preliminary assay of extract of right adrenal of rabbit XIX (Fig. 1)............. 155
— assays of extracts of right adrenal glands of rabbits 16, 17, 23 and of one control rabbit (C) (Fig. 2)... 156
Arrangement for dialyzing in an atmosphere of nitrogen...................... 167
Photograph from a tracheotomized cat poisoned with para-phenylenediamine (Fig. 1)... 223
Lower jaw of a poisoned cat from the right side (Fig. 2)...................... 225
Left side of the same cat as figure 2 (Fig. 3).................................. 225
Photograph showing the results of aortic perfusion with Ringer at 37°C. for one and one-half hours (Fig. 4).. 228
Lower jaw of the same cat as figure 4 dissected to show the tongue swelling (Fig. 5)... 228
Graph of calculated content of venom in tissues of rabbit 50 (Fig. 1)....... 240
Fresh untreated frog hearts perfused with Ringer's solution alone, then with Ringer's solution containing barium chloride (Fig. 1)................. 249
— untreated turtle hearts perfused with Ringer's solution alone, then with Ringer's solution containing barium chloride (Fig. 2)............... 251
Turtle heart (Fig. 3).. 254
— heart previously perfused with aconitine (not shown in figure) (Fig. 4) . 257
Segments of small intestine of cats in aerated Locke's solution (Fig. 5).... 261
Errors in the analysis of 86 control samples made up with known alcohol content (Fig. 1)... 272
Comparative alcohol content of blood and urine during physical work (Fig. 2)... 279
Alcohol content of blood and urine with the subject quiet (Fig. 3)........... 280
Comparative results for urine, blood, and plasma with the subject in the post-absorptive condition, and quiet (Fig. 4)............................ 281
The alcohol concentration in blood and urine produced by a more concentrated beverage (Fig. 5).. 282
— alcohol in blood and urine of an "abstinent" produced by a 2.75 per cent beverage (Fig. 6)... 284
— alcohol in the blood and urine of an "abstinent" produced by 27.5 per cent beverage (Fig. 7).. 285
Concentration of alcohol in the blood and urine of an irregular drinker, 2.75 per cent dose (Fig. 8)... 286
— of alcohol in the blood and urine of an irregular drinker, 27.5 per cent dose (Fig. 9)... 287
Comparative alcohol concentration in blood and urine of a moderate drinker, 2.75 per cent beverage (Fig. 10)................................. 287
Relative alcohol concentration in blood and urine of an occasional user of
wine, 2.75 per cent beverage (Fig. 11) 289
— alcohol content of blood and urine following the ingestion of 27.5 per
cent alcohol (Fig. 12) 289
Comparative alcohol content of blood and urine of an occasional drinker in
post absorptive condition, 2.75 per cent beverage (Fig. 13) 290
— alcohol content of blood and urine in an occasional drinker following the
ingestion of 27.5 per cent beverage (Fig. 14) 291
Alcohol content of the blood and urine of a moderate drinker in the post-
absorptive condition, 2.75 per cent beverage (Fig. 15) 292
— content of the blood and urine in a moderate drinker in the post-absorp-
tive condition, 27.5 per cent beverage (Fig. 16) 292
— in the blood and urine of a subject who, on the day previous, had engaged
in a great amount of physical exercise with the result that he was deficient
in water, 2.75 per cent dose (Fig. 17) 293
— in the blood and urine when the body is in a more normal condition of
water balance, 2.75 per cent dose (Fig. 18) 294
— in the blood and urine following 27.5 per cent beverage (Fig. 19) 295
Typical results on abstinent and moderate drinkers for the comparative con-
centration of alcohol in urine, blood, and plasma following the ingestion
of a liter of 2.75 per cent by weight alcohol beverage, taken without food
(Fig. 20) 295
— results on abstinent and moderate drinkers for the comparative alcohol
concentration in urine, blood, and plasma following the ingestion of 100
ce. of 27.5 per cent by weight alcohol, taken without food (Fig. 21) 296
Alcohol in the blood and urine of an habitual drinker after taking 1 liter of 2.75
per cent beverage (Fig. 22) 298
— in the blood and urine of an habitual drinker after taking 27.5 per cent
beverage (Fig. 23) 299
Amount of alcohol in the blood and urine of an “excessive occasional user”
after taking 2.75 per cent beverage (Fig. 24) 301
— of alcohol in the blood and urine of an “excessive occasional user” after
taking 27.5 per cent beverage (Fig. 25) 301
The alcohol concentration in the urine as influenced by the retention of
urine and frequent partial emptying of the bladder (Fig. 26) 304
Rana pipiens (Fig. 1) 327
— pipiens (Fig. 2) 328
— pipiens (Fig. 3) 329
— catesbiana (Fig. 4) 330
— pipiens (Fig. 5) 331
— pipiens (Fig. 6) 332
— catesbiana (Fig. 7) 335
— catesbiana (Fig. 8) 335
— catesbiana (Fig. 9) 336
— catesbiana (Fig. 10) 337
— catesbiana (Fig. 11) 340
— catesbiana (Fig. 12) 341
— pipiens (Fig. 13) 353
<table>
<thead>
<tr>
<th>Illustration</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rana pipiens (Fig. 14)</td>
<td>Blood pressure and uterus tracings (Fig. 1)</td>
<td>354</td>
</tr>
<tr>
<td>— same as figure 1, except that the adrenal glands have been removed (Fig. 2)</td>
<td></td>
<td>410</td>
</tr>
<tr>
<td>— with adrenals intact (Fig. 3)</td>
<td></td>
<td>413</td>
</tr>
<tr>
<td>Death-rate of guinea-pigs inoculated with Bacillus tuberculosis (Chart 1)</td>
<td></td>
<td>429</td>
</tr>
<tr>
<td>Average weight curve of control and treated animals (Chart 2)</td>
<td></td>
<td>431</td>
</tr>
<tr>
<td>Effects of normal butylamines on the circulation in dogs (Fig. 1)</td>
<td></td>
<td>441</td>
</tr>
<tr>
<td>— of monobutylamin (1:75,000, end concentration) on longitudinal strip of nicotinized rabbit’s intestine (Fig. 2)</td>
<td></td>
<td>444</td>
</tr>
<tr>
<td>— of dibutylamin (1:7500, end concentration of base) on longitudinal strip of rabbit’s intestine in 150 cc. Tyrode’s solution at 38°C.</td>
<td></td>
<td>445</td>
</tr>
<tr>
<td>— of tributylamin (1:15,000, end concentration) hydrochloride on strip of nicotinized rabbit’s pregnant uterus (Fig. 4)</td>
<td></td>
<td>445</td>
</tr>
<tr>
<td>— of dibutylamin (1:2500 base) on perfused vessels of frog’s extremities (Fig. 5)</td>
<td></td>
<td>446</td>
</tr>
<tr>
<td>— of hypnotics on body temperature of rabbit (Fig. 1)</td>
<td></td>
<td>457</td>
</tr>
<tr>
<td>— of hypnotics on body temperature of rabbit (Fig. 2)</td>
<td></td>
<td>457</td>
</tr>
<tr>
<td>— of water at 15°C, (subcutaneously) on respiration of normal rabbit (1.7 kgm.) (Fig. 1)</td>
<td></td>
<td>468</td>
</tr>
<tr>
<td>— of 20 per cent camphor oil (subcutaneously) on respiration of normal rabbit (1.7 kgm.) (Fig. 2)</td>
<td></td>
<td>468</td>
</tr>
<tr>
<td>Respiratory stimulant efficiency of water at different temperatures injected hypodermically in rabbits (Fig. 3)</td>
<td></td>
<td>470</td>
</tr>
<tr>
<td>Effects of 20 per cent camphor oil (subcutaneously) on morphinized rabbit (1.5 kgm.) (Fig. 4)</td>
<td></td>
<td>473</td>
</tr>
<tr>
<td>— of citrate on respiration and blood pressure in dog (Fig. 1)</td>
<td></td>
<td>483</td>
</tr>
<tr>
<td>— of citrate on respiration and blood pressure in cat (Fig. 2)</td>
<td></td>
<td>485</td>
</tr>
<tr>
<td>— of citrate on heart and blood pressure in dog (Fig. 3)</td>
<td></td>
<td>492</td>
</tr>
<tr>
<td>Isolated turtle heart perfused with M 1200 sodium citrate (Fig. 4)</td>
<td></td>
<td>494</td>
</tr>
</tbody>
</table>