CONTENTS

NUMBER 1, FEBRUARY, 1922

I. The Action of Diphtheria Toxin upon the Circulation. By S. Yabe 1

II. Studies on Stimulation of the Respiration: The Action of Respiratory Stimulants upon the Respiration When Depressed by Increased Intracranial Pressure with Special Reference to Sodium Cyanide. By A. S. Loevenhart, J. Y. Malone and H. G. Martin 13

III. Observations upon the Resistance of the Rat to Consecutive Injections of Strychnine. By Erich W. Schwartz 49

IV. The Action of Drugs on the Output of Epinephrin from the Adrenals. VIII. Morphine. By G. N. Stewart and J. M. Rogoff 59

V. The Influence of Muscular Exercise on Normal Cats Compared with Cats Deprived of the Greater Part of the Adrenals, with Special Reference to Body Temperature, Pulse and Respiratory Frequency. By G. N. Stewart and J. M. Rogoff 87

VI. The Influence of Morphine on Normal Cats and on Cats Deprived of the Greater Part of the Adrenals, with Special Reference to Body Temperature, Pulse and Respiratory Frequency and Blood Sugar Content. By G. N. Stewart and J. M. Rogoff 97

NUMBER 2, MARCH, 1922

VII. Perfusion of the Medulla of the Terrapin (Pseudomys troosti) with Adrenalin. By W. J. R. Heinekamp 131

VIII. The Influence of Purgatives upon Blood Concentration. By Frank P. Underhill and Louis Errico 135

IX. Studies on the Physiological Action of Some Protein Derivatives. IV. The Toxicity of Vaughan's Crude Soluble Poison. By Frank P. Underhill and Axel M. Hjort 145

X. Studies on the Physiological Action of Some Protein Derivatives. V. The Relation of Blood Concentration to Peptone Shock. By Frank P. Underhill and Michael Ringer 163

XI. Studies on the Physiological Action of Some Protein Derivatives. VI. The Influence upon Blood Concentration of Vaughan's Crude Soluble Poison. By Frank P. Underhill and Michael Ringer 179

XIII. Biological Reactions of Arsphenamine. II. The Protective Action of Hydrophilic Colloids on the Agglutination of Red Blood Cells by Arsphenamine 199
CONTENTS

NUMBER 3, APRIL, 1922

XIV. The Action of Salicylates on the Uterus. By J. W. C. Gunn and Morris Goldberg ... 207
XV. A Note on Adrenalin Hyperglycemia in man. By Henry L. Ulrich
and Harold Rypins ... 215
XVI. The Determination of the Circulation Time in Rabbits and Dogs and
Its Relation to the Reaction Time of the Respiration to Sodium Cyanide.
By A. S. Loevenhart, B. H. Schlomovitz and E. G. Seybold 221
XVII. The Action of Potassium Salts on the Medulla as Shown by Per-
fusion of the Medulla of the Terrapin (Pseudomys troosti) with Pot-
tassium Salts. By W. J. R. Heinekamp 239
XVIII. Scientific Proceedings of the American Society for Pharmacology
and Experimental Therapeutics ... 247

NUMBER 4, MAY, 1922

XIX. Functional Evidence of the Phylogeny of the Nervous System
as shown by the Behavior and Resistance of the Developing Rat to
Strychnine. By Erich W. Schartze ... 273
XX. Pharmacological Studies on Acetone. By William Salant and Nath-
aniel Kleitman .. 293
XXI. The Toxicity of Skatol. By William Salant and Nathaniel Kleitman... 307
XXII. Some Observations on the Action of Mercury. By William Salant
and Nathaniel Kleitman .. 315
XXIII. Changes with Advancing Age in the Resistance of the Albino Rat
to Arsenic. By F. S. Hammett and J. E. Nowrey, Jr. 331
XXIV. The Relative Toxicity of Germanium and Arsenic for the Albino
Rat. By F. S. Hammett, J. H. Muller and J. E. Nowrey, Jr. 337

NUMBER 5, JUNE, 1922

XXV. The Hemolytic Properties of Arsphenamine and Fifteen Allied
Compounds. By C. P. Grabfield ... 343
XXVI. Feeding Experiments on Tadpoles: Prostate Gland and Other
Substances. By J. M. Rogoff and Wm. Rosenberg 353
XXVII. Animal Calorimetry. The Influence of Morphine upon Heat Pro-
duction in the Dog. By Alfred Chanutin and Graham Lusk 359
XXVIII. Studies of chronic Intoxications on Albino Rats. VI. Lead
Carbonate. By Torald Sollmann .. 375
XXIX. An Improved Method for Using Phenoltetrachlorphthalein as a
Liver Function Test. By S. M. Rosenthal 385

NUMBER 6, JULY, 1922

XXX. Biological Reactions of Arsphenamine. III. Its Immediate Toxicity
as Contrasted with Its Late Ill Effects, and the Role of Agglutination
in the Production of the Former. By Jean Oliver and So Sabro Yamada. 393
XXXI, Studies on Strychnin. By Soma Weiss and Robert A. Hatcher 419
ILLUSTRATIONS

Apparatus for recording stimulation of the respiration (Fig. 1) 16
Tracing showing stimulation of the respiration (Fig. 2) 18
— showing stimulation of the respiration (Figs. 3 and 4) 20
— showing stimulation of the respiration (Fig. 5) 21
— showing stimulation of the respiration (Figs. 6 and 7) 30
— showing stimulation of the respiration (Fig. 8) 34
— showing stimulation of the respiration (Fig. 9) 36
— showing stimulation of the respiration (Fig. 10) 37
Intestine tracings; bloods from cat 619 (Fig. 1) 63
— tracings; bloods from cat 619 (Fig. 2) 64
— tracings; bloods from cat 626 (Fig. 3) 67
— tracings; bloods from cat 624 (Fig. 4) 71
— tracings; bloods from cat 625 (Fig. 5) 73
— tracings; bloods from dog 622 (Fig. 6) 77
— tracings; bloods from dog 623 (Fig. 7) 80
Temperature curves (dog) (Fig. 1) 105
Partial inhibition produced by perfusing the brain of Pseudomys troosti with 1:50,000 adrenalin (Fig. 1) 132
Complete inhibition effected by the perfusion of 1:50,000 adrenalin through brain of Pseudomys troosti (Fig. 2) 132
Dog A. The influence of magnesium sulphate upon hemoglobin content (Fig. 1) 138
— The influence of magnesium sulphate upon hemoglobin content (Fig. 2) 138
— A. The influence of magnesium sulphate upon hemoglobin content (Fig. 3) 138
— A. The influence of sodium sulphate upon hemoglobin content (Fig. 4) 138
— B. The influence of sodium sulphate upon hemoglobin content (Fig. 5) 138
— A. The influence of sodium sulphate upon hemoglobin content (Fig. 6) 138
— B. The influence of rochelle salt upon hemoglobin content (Fig. 7) 139
— A. The influence of rochelle salt upon hemoglobin content (Fig. 8) 139
— B. The influence of rochelle salt upon hemoglobin content (Fig. 9) 139
— A. The influence of castor oil upon hemoglobin content (Fig. 10) 140
— B. The influence of castor oil upon hemoglobin content (Fig. 11) 140
— A. The influence of castor oil upon hemoglobin content (Fig. 12) 141
— B. The influence of cascara sagrada upon hemoglobin content (Fig. 13) 141
— A. The influence of cascara sagrada upon hemoglobin content (Fig. 14) 142
— B. The influence of cascara sagrada upon hemoglobin content (Fig. 15) 142
1. Injection of 0.3 gram per kilo "Witte Pepton" in ten seconds (Chart 1) 167
Dog 48. Injection of 0.5 gram per kilo "Witte Pepton" in ten seconds
(Chart 2) .. 167
46. Injection of 0.5 gram per kilo "Witte Pepton" in two minutes
(Chart 3) .. 168
7. Injection of 0.5 gram "Witte Pepton" in twelve minutes 168
51. Rapid injection of 0.5 gram per kilo "Witte Pepton" (Chart 5) 169
52. Rapid injection of 0.5 gram per kilo "Witte Pepton" (Chart 6) 169
54. Rapid injection of 0.5 gram per kilo "Witte Pepton" (Chart 7) 170
56. Rapid injection of 0.5 gram per kilo "Witte Pepton" (Chart 8) 170
58. Rapid injection of 0.5 gram per kilo "Witte Pepton" (Chart 9) 172
61. One-half ounce of amyl nitrite inhaled (Chart 10) 172
34. Rapid injection (five seconds) of 0.5 gram per kilo of denteroxproteoses (Chart 11) ... 175
40. Injection slowly (in four minutes) 1 mgm. per kilo of histamine
(Chart 12) .. 175
16. Injected intermittently during an interval of thirteen minutes
1 mgm. per kilo of histamine (Chart 18) 176
53. Injected rapidly 1 mgm. per kilo histamine followed by injections
of 7 cc. 1 per cent BaCl₂ solution (Chart 14) 176
19. Rapid injection of Vaughan's crude soluble poison (Chart 1) 182
20. Rapid injection of Vaughan's crude soluble poison (Chart 2) 183
22. Rapid injection of Vaughan's non-toxic residue (Chart 3) 184
Effect of 1:2000 sodium salicylate on the excised uterus of the pregnant rabbit
(Fig. 1) .. 208
Slight increase of tone of the isolated uterus after 1:5000 sodium salicylate
(Fig. 2) .. 208
Uppermost line shows uterine movements, contraction recorded by downward movement of the uterus of the non-pregnant rabbit. Effect of injecting 200 mgm. of sodium salicylate per kilo. Lowest line records the injection (Fig. 3) ... 210
Same tracing as in figure 3 after ten minutes (Fig. 4) 211
Determination of circulation time (Fig. 1) 225
Slowing produced by potassium chloride (Fig. 1) 240
produced by potassium iodide (Fig. 3) 240
produced by potassium sulphate (Fig. 4) 241
produced by potassium fluoride (Fig. 5) 241
produced by potassium nitrate (Fig. 6) 241
produced by potassium tartrate (Fig. 7) 241
Inhibition produced by potassium hydroxide (Fig. 8) 242
Slowing produced by potassium bromate (Fig. 9) 242
Inhibition produced by potassium cyanide (Fig. 10) 242
Slowing produced by potassium thiocyanate (Fig. 11) 242
Experiment 13. Cat, weight 2.4 kilos. Ether anesthesia (Fig. 1) 295
21. Dog, weight 6.3 kilos. Ether anesthesia (Fig. 2) 297
97. Frog heart perfused with 5 per cent acetone in Ringer's solution
for twenty-five minutes (Fig. 3) 300
94. Frog heart (Fig. 4) ... 300
ILLUSTRATIONS

Experiment 102. Turtle heart (Fig. 5) .. 301
Cat, Weight 2.2 kilos. Ether anesthesia (Fig. 1) 310
Experiment 33. Injected 50 mgm. skatol in 1 cc. acetone (Fig. 2) 31
— 33. Moderate fall of blood pressure after rapid injection of 1 cc. ace-
tone (Fig. 3) ... 312
— 40. Cat, weight 2.8 kilos. Urethane anesthesia (Fig. 1) 317
— 5. Dog, weight 6 kilos. Morphine ether anesthesia (Fig. 2) 320
— 44. Turtle heart (Fig. 3) .. 323
— 55. Turtle heart perfused with mercuric chloride (Hg 1:1,000,000)
for ten minutes (Fig. 4) ... 325
— 79. Frog heart perfused for one minute with mercuric chloride in
Ringer's solution (Hg 1:10,000) shows depression (Fig. 5) 326
— 80. Frog heart perfused for one minute with mercuric chloride in
Ringer's solution (Hg 1:10,000) (Fig. 6) .. 327
Type curves of effects of lead carbonate on growth (Fig. 1) 381
Rate of disappearance of phenoltetrachlorphthalein from blood of normal
dogs (Fig. 1) ... 386
Dog 3. Two hours chloroform anesthesia (Fig. 2) 387
— 4. Two hours and twenty minutes chloroform anesthesia (Fig. 3) 388
— 5. Two hours and fifteen minutes chloroform anesthesia (Fig. 4) 389
Rabbit 48a, 0.28 gram of arsphenamine per kilo (Fig. 1) 400
— 20, 0.32 gram arsphenamine per kilo (Fig. 2) 400
— 48a. Sudden death following 0.28 gram arsphenamine per kilo (Fig. 3) 401
— 51. Sudden death following 0.42 gram arsphenamine per kilo (Fig. 4) 402
— 19. 0.40 gram arsphenamine per kilo (Fig. 5) 403
— 20. Died acutely following 0.32 gram arsphenamine (Fig. 6) 403
— 27. Immediate death following 0.21 gram arsphenamine per kilo (Fig. 7) 404
— 54. Died suddenly after an injection of 25 cc. of red cells previously
agglutinated with arsphenamine (Fig. 8) 407
— 26. Died two and one-half hours after the injection of 0.23 gram
arsphenamine (Fig. 9) ... 409