CONTENTS

NUMBER 1, AUGUST, 1921

I. On the Relative Amounts of Depressor and Broncho-Constrictor Substance Obtainable from the Anterior and Posterior Lobes of the Fresh Pituitary Gland. By John Roco

II. On the Pituitary Active Principles and Histamine. By H. H. Dale and H. W. Dudley

III. Studies of Chronic Intoxications on Albino Rats. V. Arsenic Trioxid. By Torald Sollmann

IV. On the Chemical Composition and Physiological Characteristics of Brain Cephalin. By Frederic Feuger

V. The Pharmacology of Chelidonin, the Benzylisoquinoline Alkaloid of Chelidonium (Celandine or Tetterwort) and Stylophorum. By P. J. Hanulik

NUMBER 2, SEPTEMBER, 1921

VI. The Physiological Action of N-Methylhistamine and of Tetrahydro-pyrido-3.4-iminazole ("Imidazolopiperidin" of Franke). By H. H. Dale and H. W. Dudley

VII. Response to Drugs of Excised Bronchi from Normal and Diseased Animals. By D. I. Macht and Gia, Ching Ting

VIII. Epinephrine Hyperglycemia. II. By Arthur L. Tatum

X. Effects of Vasomotor Depressants upon the Volume of the Liver. By Charles W. Edmunds

NUMBER 3, OCTOBER, 1921

XII. The Activity of the Isolated Uterus. By Sukemasa Ogata

XIII. Notes on the Toxic Effects of Chlorine Antiseptics in Dogs. By H. G. Barbour and A. M. Hjort

XIV. The Reaction to Epinephrin Administered by Rectum. By R. G. Hoskins
CONTENTS

XV. Studies on the Influence of Phenylcinchoninic Acid and the Ethyl Ester of Paramethylphenylcinchoninic Acid on Renal Excretion. By Victor C. Myers and John A. Killian 213

XVI. The Effect of Water Diuresis on the Elimination of Certain Urinary Constituents. By A. D. Carr 221

NUMBER 4, NOVEMBER, 1921

XVIII. The Influence of the Electric Current on the Absorption of Drugs. By O. Inchley 241

XIX. On the Influence of Colloids on the Action of Non-Colloidal Drugs. III. By W. Storm van Leeuwen and A. von Szent-Györgyi 257

XX. On the Influence of Colloids on the Action of Non-Colloidal Drugs. IV. By W. Storm van Leeuwen and A. von Szent-Györgyi 271

XXI. The Sensitiveness to Poisons in Avitaminous Animals. By W. Storm van Leeuwen and F. Verzár 293

XXII. The Physiological Standardization of Extract of Belladonna. By W. Storm van Leeuwen and P. H. Maal 313

NUMBER 5, DECEMBER, 1921

XXIII. The Effect of Hydrogen Ion Concentration on the Toxicity of Alkloids for Paramoecium. By Marian M. Crane 319

XXV. Experimental Inquiry into the Sedative Properties of Some Aromatic Drugs and Fumes. By David I. Macht and Giu, Ching Ting 361

XXVI. A Study of Antispasmodic Drugs on the Bronchus. By David I. Macht and Giu, Ching Ting 373

NUMBER 6, DECEMBER, 1921

XXVII. The Toxicity of the Blood of Adrenalectomised Frogs. By C. H. Kellaway 399

XXVIII. Uterine Effects of Intravenous Injections of Fluids. By H. G. Barbour and F. H. Rapoport 407

XXIX. On Scopolamine-Morphine Narcosis. By W. Storm van Leeuwen and A. von Szent-Györgyi 449

XXX. The Relation of Histamine to Intestinal Intoxication. I. The Presence of Histamine in the Human Intestine. By Jonathan Meakins and Charles Robert Harington 455

XXXI. The Effects of Some New Local Anesthetics. Para-aminobenzoyle Dinormal Butyl-amino Ethanol and Propanol; and Diethyl Amino-Propyl Diphenyl Amino-Carbinol. By M. L. Bonar and Torald Sollmann 467
<table>
<thead>
<tr>
<th>Illustration Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dog, male, 6 kgm., ether anesthesia (Fig. 1)</td>
<td>3</td>
</tr>
<tr>
<td>—— pithed, 13.3 kgm. (Fig. 2)</td>
<td>4</td>
</tr>
<tr>
<td>—— pithed, 13.3 kgm. (Fig. 3)</td>
<td>5</td>
</tr>
<tr>
<td>—— pithed, 9.2 kgm. (Fig. 4)</td>
<td>6</td>
</tr>
<tr>
<td>One entire horn virgin guinea-pig’s uterus (Fig. 5)</td>
<td>13</td>
</tr>
<tr>
<td>—— entire horn virgin guinea-pig’s uterus (Fig. 6)</td>
<td>14</td>
</tr>
<tr>
<td>—— entire horn virgin guinea-pig’s uterus (Fig. 7)</td>
<td>15</td>
</tr>
<tr>
<td>—— entire horn virgin guinea-pig’s uterus (Fig. 8)</td>
<td>16</td>
</tr>
<tr>
<td>—— entire horn virgin guinea-pig’s uterus (Fig. 9)</td>
<td>17</td>
</tr>
<tr>
<td>Male dog, 5.8 kgm., paraldehyde anesthesia (Fig. 10)</td>
<td>18</td>
</tr>
<tr>
<td>Dog, male, 5.8 kgm., paraldehyde anesthesia (?) (Fig. 11)</td>
<td>19</td>
</tr>
<tr>
<td>Effect of injecting into the femoral vein of a pithed dog 4 cc. out of a total quantity of 25 cc. aqueous solution of the chloroform extract of fraction I (mercuric chloride tar) of posterior lobe (Fig. 12)</td>
<td>20</td>
</tr>
<tr>
<td>—— of injecting into the femoral vein of a pithed dog 8 cc. out of a total quantity of 100 cc. aqueous solution of the chloroform extract of fraction I (mercuric chloride tar) of anterior lobe (Fig. 13)</td>
<td>21</td>
</tr>
<tr>
<td>Shows that the apparatus employed for the preparation of figure 12 in which the chloroform extract of the posterior lobe was shown to constrict the bronchioles was not set to register small alterations in lung volume (Fig. 14)</td>
<td>22</td>
</tr>
<tr>
<td>Effect of injection into the femoral vein of a pithed dog 1 cc. solution of pressor and oxytocic phosphate “A” = 11 mgm. prepared by decomposing the “proteid-HgCl2-precipitate” of Abel and Nagayama (Fig. 15)</td>
<td>23</td>
</tr>
<tr>
<td>Shows the entire absence of broncho-motor action of 5.5 and 11 mgm. of choline chloride injected into the femoral vein of a pithed dog (Fig. 16)</td>
<td>24</td>
</tr>
<tr>
<td>Blood pressure of cat under ether (Fig. 1)</td>
<td>32</td>
</tr>
<tr>
<td>—— pressure of cat under ether (Fig. 2)</td>
<td>33</td>
</tr>
<tr>
<td>Pituitary active principles and histamine (Fig. 3)</td>
<td>34</td>
</tr>
<tr>
<td>—— active principles and histamine (Fig. 4)</td>
<td>35</td>
</tr>
<tr>
<td>Blood pressure of cat under ether (Fig. 5)</td>
<td>36</td>
</tr>
<tr>
<td>Pituitary active principles and histamine (Fig. 6)</td>
<td>37</td>
</tr>
<tr>
<td>Effect of erepsin on oxytocic principle (Fig. 7)</td>
<td>40</td>
</tr>
<tr>
<td>Effects of arsenic on the growth of rats (Fig. 1)</td>
<td>44</td>
</tr>
<tr>
<td>Arsenic on food consumption (Fig. 2)</td>
<td>47</td>
</tr>
<tr>
<td>Effects of chelidonin on cardiac volume, kidney volume and blood-pressure of curarized and atropinized dog (18.5 kgm.) (Fig. 1)</td>
<td>77</td>
</tr>
<tr>
<td>—— of chelidonin on perfused turtle’s heart (Fig. 2)</td>
<td>78</td>
</tr>
<tr>
<td>Longitudinal strip of dog’s ureter in 150 cc. of Tyrode’s solution (Fig 3)</td>
<td>86</td>
</tr>
<tr>
<td>Dog’s bladder; quiescent strip in 50 cc. Tyrode’s solution (Fig. 4)</td>
<td>86</td>
</tr>
</tbody>
</table>
Rabbit’s aorta; ring preparation in 150 cc. Tyrode’s solution (Fig. 5) 86
Dog 15.2 kgm. Effect of chelidonin and hemorrhage on intestinal peristalsis, blood-pressure and respiration (Fig. 6) 88
Effect of chelidonin on untreated bronchi of decerebrated dog (6.5 kgm.) (Fig. 7) 93
— of chelidonin on bronchi of decerebrate cat (1.5 kgm.) (Fig. 8) 93
Blood pressure of cat under ether (Fig. 1) 105
Horn of guinea-pig’s uterus suspended in 80 cc. Ringer solution (Fig. 2) 105
Horn of guinea-pig’s uterus suspended in 80 cc. Ringer solution (Fig. 4) 109
Bronchus of pig (Fig. 1) 114
Normal bronchus of pig (Fig. 2) 114
Bronchus of pig (Fig. 3) 115
Diseased bronchus of pig, freshly excised (Fig. 4) 115
Section of pig’s lung showing consolidation and inflammatory process (Fig. 5) 116
— of normal lung of pig (Fig. 6) 116
Amyl nitrite effect upon portal pressure and liver volume in the dog (Fig. 1) 157
Effect of the injection of 3 cc. of dog’s urine upon the portal blood pressure and liver volume in the dog (Fig. 2) 160
Experiment H17. Effect of sodium salicylate on normal dog (Fig. 1) 169
— H15. Effect of sodium salicylate on coli fever dog (Fig. 2) 169
— H25. Effect of antipyrine on normal dog (Fig. 3) 170
— H33. Effect of antipyrine on coli fever dog (Fig. 4) 170
— H28. Effect of quinine-hydrochlorid on normal dog (Fig. 5) 171
— H32. Effect of quinine-hydrochlorid on coli fever dog (Fig. 6) 171
— 60. Effect of sodium salicylate on coli fever dog (Fig. 7) 172
— 57. Effect of sodium salicylate on coli fever dog (Fig. 8) 173
— 24. Effect of coli vaccine and of sodium salicylate (Fig. 9) 178
— 25. Effect of coli vaccine and of sodium salicylate (Fig. 10) 178
Manner of suspending uterine horn of virgin rabbit (Fig. 1) 187
Rhythmic contractions of circular muscle coat of virgin rabbit uterus (Fig. 2) 187
Uterus of non-pregnant multiparous rabbit (Fig. 3) 188
Multiparous rabbit, horn of the uterus split (Fig. 4) 189
— rabbit, whole uterus horn as in figure 1 (Fig. 5) 189
Contractions of longitudinal and circular muscle of pregnant rabbit (Fig. 6) 190
Virgin rabbit uterus suspended as in diagram (Fig. 7) 191
— rabbit. Nerves to right horn divided eighty-two days previously (Fig. 8) 192
— rabbit uterus (Fig. 9) 192
— rabbit. Operated fifty-six days previously (Fig. 10) 193
— rabbit uterus (Fig. 11) 193
— rabbit. Nerves of right horn cut sixty-four days previously (Fig. 12) 194
— rabbit. Right horn cut sixty-four days previously (Fig. 13) 194
Multiparous rabbit. Nerves of right horn cut twenty-two days previously (Fig. 14) 195
— rabbit. Nerves to right horn cut twenty-two days previously (Fig. 15) 196
Rat’s uterus (Fig. 16) 196
Nervous supply of uterus severed by cutting broad ligament (Fig. 17) 198
Effect of epinephrin by rectum on intestinal peristalsis and carotid blood pressure (Fig. 1) 209
— time of blood (Fig. 2) 238
Influence of electric current on absorption of drugs, rabbits A and B (Fig. 1) 244
— of electric current on absorption of drugs, blood pressure tracings (Fig. 2) 245
— of electric current on absorption of drugs, diagram of apparatus (Fig. 3) 246
— of electric current on absorption of drugs, rabbit, 2.5 grams of urethane (Fig. 4) 247
— of electric current on absorption of drugs, guinea-pig, 300 grams of urethane (Fig. 5) 251
Isolated gut suspended in 75 cc. of Tyrode solution. Influence of serum on pilocarpine action (Fig. 1) 258
Influence of lecithin on pilocarpine action (Fig. 2) 260
— of cholesterol on pilocarpine action (Fig. 3) 261
— of cholesterol on pilocarpine action (Fig. 4) 262
— of cephalin on pilocarpine action (Fig. 5) 263
— of lecithin on histamine action (Fig. 6) 267
— of lecithin on histamine action (Fig. 7) 268
Isolated cat’s intestine suspended in 75 cc. of Tyrode solution (Fig. 1) 274
— gut suspended in 75 cc. Tyrode solution (Fig. 2) 279
— gut suspended in 75 cc. Tyrode solution (Fig. 3) 280
— cat’s intestine suspended in 75 cc. Tyrode solution (Fig. 4) 284
— cat’s intestine suspended in 75 cc. Tyrode solution (Fig. 5) 284
Influence of adrenaline (Parke, Davis and Company) on blood pressure of a fowl suffering from avitaminosis (Fig. 1) 301
— of pilocarpine hydrochloride and atropine sulfate on isolated gut of normal fowl (Fig. 2a) 303
— of pilocarpine and atropine on isolated gut of fowl suffering from experimental polyneuritis (Fig. 2b) 303
Action of 0.05 mgm. of ergamine (Burroughs, Welcome and Company) on isolated gut of normal fowl (Fig. 3a) 304
— of 0.005 mgm. of ergamine on isolated gut of fowl suffering from experimental polyneuritis (Fig. 3b) 304
— of 0.1 mgm. of pilocarpine on isolated esophagus of fowl suffering from experimental polyneuritis (Fig. 4) 305
— of adrenaline on blood pressure of cat suffering from experimental polyneuritis (Fig. 5) 308
Fall in blood pressure caused by 0.01 mgm. of ergamine in a cat suffering from experimental polyneuritis (Fig. 6) 309
Action of 0.01 mgm. of pilocarpine on isolated gut of a cat suffering from polyneuritis (Fig. 7) 310
Pig’s bronchus (Fig. 1) 377
— bronchus (Fig. 2) 377
Bronchus of pig (Fig. 3) 378
— of pig (Fig. 4) 378
Surviving bronchus of pig (Fig. 5) 390
Pilocarpin hydrochloride, 1 mgm., produces marked contraction (Fig. 6) 379
Bronchus of pig (Fig. 7) .. 380
 of pig (Fig. 8) .. 382
 of pig (Fig. 9) .. 382
 of pig (Fig. 10) ... 382
 of pig (Fig. 11) ... 382
 of pig (Fig. 12) ... 383
 of pig (Fig. 13) ... 383
 of pig (Fig. 14) ... 383
 of pig (Fig. 15) ... 383
 of pig (Fig. 16) ... 383
 of pig (Fig. 17) ... 385
 of pig (Fig. 18) ... 385
 of pig (Fig. 19) ... 385
 of pig (Fig. 20) ... 389
 of pig (Fig. 21) ... 389
 of pig (Fig. 22) ... 389
 of pig (Fig. 23) ... 390
 of pig (Fig. 24) ... 391
Perfused normal frog heart (Fig. 1) 404
Uterine effects of intravenous injections. Dog 7 (Fig. 1) 409
 effects of intravenous injections. Dog 4 (Fig. 2) 411
 effects of intravenous injections. Dog 18 (Fig. 3) 412
 effects of intravenous injections. Dog 18 (Fig. 4) 413
 effects of intravenous injections. Dog 3 (Fig. 5) 416
 effects of intravenous injections. Dog 1 (Fig. 6) 418
 effects of intravenous injections. Dog 14 (Fig. 7) 419
Fig. 1 ... 427
Isolated frog's heart perfused, movements of auricle and ventricle record
 (Fig. 2) .. 431
The action of thorium upon the frog's heart (Fig. 3) 433
Frog's heart perfused with potassium-free Ringer (Fig. 4) 434
Isolated auricle of rabbit suspended in Ringer (Fig. 5) 437
The action of uranium upon the isolated auricle of the rabbit (Fig. 6) 438
 action of potassium, rubidium, caesium and thorium upon the isolated
 rabbit's auricle when this is excited by lack of potassium (Fig. 7) 439
 action of potassium, rubidium, caesium and thorium in producing con-
 tractions of the isolated uterus of the rabbit (Fig. 8) 440
 action of potassium, rubidium, caesium and thorium in producing con-
 tractions in the isolated uterus of a kitten (Fig. 9) 441
 effect of alteration of the potassium content of Ringer upon the vessels
 of a frog perfused through the aorta (Fig. 10) 442
 action of potassium, rubidium and thorium in inhibiting the hyper-
 acidity of the rabbit's uterus produced by lack of potassium (Fig. 11) .. 442
 action of uranium and rubidium in inhibiting the hyperacidity pro-
 duced by lack of potassium in the isolated gut and uterus of the rabbit
 (Fig. 12) .. 442
 action of potassium, rubidium and caesium in inhibiting the hyper-
 acidity produced by lack of potassium in the isolated gut of the rabbit
 (Fig. 13) .. 443
Relation of histamine to intestinal intoxication (Fig. 1) 460
Comparison of effective and toxic doses of anesthetics (Fig. 1) 488