CONTENTS

NUMBER 1, JUNE, 1909

Editorial Announcement

I. The Comparative Toxicity of the Chlorides of Magnesium, Calcium, Potassium and Sodium. By Don R. Joseph and S. J. Meltzer 1

III. Studies in Tolerance: II. Strychnine. By Worth Hale 39

IV. The Mechanism of Hemolysis with Special Reference to the Relations of Electrolytes to Cells. By G. N. Stewart 49

V. Studies Concerning the Iodine-containing Principle of the Thyroid Gland: I. Pharmacological Action and Therapeutic Behavior of Diiodotyrosin. By S. Strouse and C. Voegtlin 123

VI. The Antagonism of the Adrenal Glands against the Pancreas. By Charles Wallis Edmunds 135

VII. Quantitative Experiments with the Cutaneous Tuberculin Reaction. By Clemens F. von Pirquet 151

NUMBER 2, AUGUST, 1909

VIII. Some Convenient Laboratory Apparatus. By Albert C. Crawford and Harlan Verne Honn 175

IX. The Effects of Caffeine and Sodium Bicarbonate upon the Toxicity of Acetanilide. By Worth Hale 185

X. Anesthesia by the Intracerebral Injection of Magnesium Chloride. By V. E. Henderson 199

XI. Ergot. By W. H. Cronyn and V. E. Henderson 203

XII. On the Pharmacological Action of Some Phthaleins and Their Derivatives, with Special Reference to Their Behavior as Purgatives: I. By John J. Abel and L. G. Rowntree 231

XIII. Clavin, Vahlen's Active Constituent of Ergot. By Donald D. Vanslyke 265

XIV. The Effect of Collodion on the Amanita-Hemolysin. By William W. Ford 269

XV. The Distribution of Poisons in the Amanitas. By William W. Ford 275

XVI. On the Pharmacological Action of Iod-, Iodoso- and Oxyiodosobenzoic Acids. A Preliminary Note. By A. S. Loevenhart and W. E. Grove 289
CONTENTS

NUMBER 3, OCTOBER, 1909

XVII. Experimental Criticism of Recent Results in Testing Adrenalin. By W. H. Schultz...

XVIII. On the Relation between the Toxicity and Chemical Constitution of a Number of Derivatives of Choline and Analogous Compounds. By Reid Hunt and R. deM. Taveau...

XIX. The Action of Adrenalin on the Pulmonary Vessels. By Carl J. Wiggers...

XX. A Clinical Study of Crystalline Strophanthin. By Harold C. Bailey...

XXI. The Life-saving Action of Physostigmin in Poisoning by Magnesium Salts. By Don R. Joseph and S. J. Meltzer...

NUMBER 4, JANUARY, 1910

XXII. Note on the Amanita-Toyin. By William W. Ford and Ira H. Prouty...

XXIII. The Action of Urea and of Hypertonic Solutions on the Heart and Circulation. By J. A. E. Eyster and A. G. Wilde...

XXIV. Quantitative Studies on the Gastro-intestinal Absorption of Drugs: I. The Inhibitory Action of Phenol on Absorption. By Torald Sollmann, Paul J. Hanzlik and J. Douglas Filcher...

XXV. On the Toxicity of Dextro-, Laevo- and Inactive Camphor. By W. E. Grove...

XXVI. Apparatus for Recording the Outflow of Liquids. By William R. Williams...

NUMBER 5, MARCH, 1910

XXVII. Anastomosis between the Portal Vein and the Inferior Vena Cava (Eck's Fistula). By Bertram M. Bernheim, John Homans and Carl Voegtlin...

XXVIII. The Pharmacologic Action of Certain Protein Cleavage Products upon the Heart. By R. B. Gibson and W. H. Schultz...

XXIX. The Influence of Alcohol on the Composition of Urine. By William Salant and F. C. Hinkel...

XXX. A Poisonous Principle in Certain Cotton-seed Meals. By Albert C. Crawford...

XXXI. Physiological Studies in Anaphylaxis: I. The Reaction of Smooth Muscle of the Guinea-pig Sensitized with Horse Serum. By W. H. Schultz...

XXXII. Proceedings of the American Society for Pharmacology and Experimental Therapeutics...

NUMBER 6, JUNE, 1910

XXXIII. An Experimental and Clinical Study of the Functional Activity of the Kidneys by Means of Phenolsulphonephthalein. By L. G. Rowntree and J. T. Geraghty...

XXXIV. A Practical Method for the Preparation of Phenolsulphonephthalein By Edgar A. Slagle...
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductivities plotted along vertical and dilutions along horizontal axis</td>
<td>70</td>
</tr>
<tr>
<td>Adrenalin after ergotoxin in a cat (Tracing 1)</td>
<td>142</td>
</tr>
<tr>
<td>From dog. Effect of injection 2 mg. nicotine (Tracing 2)</td>
<td>143</td>
</tr>
<tr>
<td>From same dog as tracing 2 (Tracing 3)</td>
<td>144</td>
</tr>
<tr>
<td>From dog. Effect of asphyxia (Tracing 4)</td>
<td>146</td>
</tr>
<tr>
<td>From dog. Effect of stimulation of central end of cut vagus (Tracing 5)</td>
<td>148</td>
</tr>
<tr>
<td>Curves of a first vaccination with cowpox (Fig. 1)</td>
<td>152</td>
</tr>
<tr>
<td>Consecutive vaccinations. Development of "Allergy" (Fig. 2)</td>
<td>153</td>
</tr>
<tr>
<td>Quantitative experiments with tuberculin (Fig. 3)</td>
<td>155</td>
</tr>
<tr>
<td>Field of vaccination under tangential illumination (Fig. 4)</td>
<td>161</td>
</tr>
<tr>
<td>Field of vaccination under vertical illumination (Fig. 5)</td>
<td>163</td>
</tr>
<tr>
<td>Course of reaction of point A (Fig. 7)</td>
<td>165</td>
</tr>
<tr>
<td>Course of reaction of point D (Fig. 8)</td>
<td>166</td>
</tr>
<tr>
<td>Course of reaction of tuberculin 32 times diluted (Fig. 9)</td>
<td>167</td>
</tr>
<tr>
<td>Course of reaction of tuberculin 256 times diluted (Fig. 10)</td>
<td>168</td>
</tr>
<tr>
<td>Average curve of dilution 1:4 + average points of two single curves (Fig. 11)</td>
<td>169</td>
</tr>
<tr>
<td>Average curves 1, 4, 16, 64, 256 (Fig. 12)</td>
<td>170</td>
</tr>
<tr>
<td>Average curves 2, 8, 32, 128, 512 (Fig. 13)</td>
<td>170</td>
</tr>
<tr>
<td>Dilution and diameter (Fig. 14)</td>
<td>172</td>
</tr>
<tr>
<td>Influence of both factors on the course of reaction (Fig. 15)</td>
<td>173</td>
</tr>
<tr>
<td>Automatic winding device for kymograph (Fig. 1)</td>
<td>176</td>
</tr>
<tr>
<td>Clutch of the automatic winding device for kymograph (Fig. 2)</td>
<td>177</td>
</tr>
<tr>
<td>Apparatus for registering injections (Fig. 3)</td>
<td>179</td>
</tr>
<tr>
<td>Improved apparatus for registering injections (Fig. 4)</td>
<td>180</td>
</tr>
<tr>
<td>A nerve stimulating apparatus (Fig. 5)</td>
<td>181</td>
</tr>
<tr>
<td>A combined signal and base line (Fig. 6)</td>
<td>182</td>
</tr>
<tr>
<td>Cat, ergot 0.5 cc., B. W. and Co. liquid extract intravenous (Tracing 1)</td>
<td>220</td>
</tr>
<tr>
<td>Cat, ergot 1 cc., P. D. and Co. aseptic ergot (Tracing 2)</td>
<td>221</td>
</tr>
<tr>
<td>Cat, ergot 0.75 cc., B. W. and Co liquid extract intravenous (Tracing 3)</td>
<td>222</td>
</tr>
<tr>
<td>Cat, pregnant near full term, ergotoxine 0.5 mgm. (Tracing 5)</td>
<td>224</td>
</tr>
<tr>
<td>Cat, uterine contractions and blood-pressure (Tracing 6)</td>
<td>225</td>
</tr>
<tr>
<td>Cat, uterine contractions and blood pressure (Tracing 7)</td>
<td>226</td>
</tr>
<tr>
<td>Uterine contractions from a cat about 6 weeks pregnant on receiving equal fractions of the average recommended dose, etc. (Tracing 8)</td>
<td>227</td>
</tr>
<tr>
<td>Cat, intracerebral magnesium chloride, in shock, (Tracing 9)</td>
<td>228</td>
</tr>
<tr>
<td>At 11.54, 0.66 ergotoxine intravenously (Tracing 10)</td>
<td>229</td>
</tr>
<tr>
<td>Apparatus to produce a rhythmical perfusion stream through the lungs (Fig. 1)</td>
<td>344</td>
</tr>
<tr>
<td>Effect of adrenalin (1 mg.) on perfused lungs (Fig. 2)</td>
<td>346</td>
</tr>
</tbody>
</table>
Segments of 3 records showing the effect of the adrenalin solvent on the pulmonary vessels perfused with saline gelatin solution (Fig. 3) 348
Jugular (upper) and radial tracings (Tracing 1) 352
One hour after injection (Tracing 2) 353
Four hours after injection (Tracing 3) 353
Very irregular rhythm. Groups of extra systoles (Tracing 4) 354
Eighteen hours after preceding tracing (Tracing 5) 354
Thirty hours after last strophanthin injection (Tracing 6) 355
Five hours later than the preceding. Tracing four hours after an injection of strophanthin (Tracing 7) 355
Rapid and irregular pulse. Groups of extra systoles (Tracing 8) 356
Taken the same hour as the preceding tracing but at a faster speed (Tracing 9) 356
Apex (upper) and radial tracing showing that there is an extra beat at the apex that is not perceptible at the wrist (Tracing 10) 356
Apex (upper) and radial tracings showing that each beat at the heart goes through to the wrist (Tracings 10 and 11) 357
Jugular (upper) and radial tracings. Pulse very rapid and irregular. (Tracing 11) 357
Twenty-four hours later than preceding tracing. Rhythm still somewhat irregular due to extra systoles (Tracing 13) 360
Three days after treatment was started (Tracing 14) 360
Jugular (upper) and radial. Tricuspid. Regurgitation present (Tracing 15) 361
Radial tracing following day, four hours before death and eleven hours after the last injection (Tracing 16) 361
Radial tracing (Tracing 17) 362
Jugular and radial. Tricuspid regurgitation. Nodal rhythm (Tracing 18) 362
Jugular (upper) and radial. Three hours before death and ten hours after last injection (Tracing 19) 362
Respiratory tracing by pneumograph, inspiration upwards (Fig. 1) 378
Respiratory tracing by pleural cannula; inspiration downward (Fig. 2) 379
Shows the effect of the direct application to the frog's heart of a 0.1 per cent solution of urea in Ringer's fluid (Fig. 1) 395
Plethysmographic record of the terrapin's heart under artificial perfusion (Fig. 2) 395
Effect of urea upon a sino-auricular strip from a terrapin's heart, (Fig. 3) 396
Shows the effects of the application of a 3 per cent solution of urea in Ringer's fluid to the frog's heart (Fig. 4) 397
Shows the effects of urea on the blood pressure and cardiac output in the cat (Fig. 5) 402
Shows the continued dilatation of the intestines with unchanged mean arterial pressure following the injection of urea (Fig. 6) 403
Shows the effects of urea on the volume of the kidney. Cat (Fig. 7) 405
Plethysmographic record of the intestinal volume and the mean arterial pressure. Cat (Fig. 8) 406
Drop recorder; 1, clamp for glass tube; 2, wing-nut on adjustment for clamp; 3, frame of brass, etc. (Fig. 1) 458
Tipping bucket, to be substituted for the tilting plate for more rapid flow (Fig. 2) 459
ILLUSTRATIONS

Simple form of frame for tilting plate and tipping bucket (Fig. 3) 460
Tracing from diuresis experiment. Dog. Morphine and chloretone anesthesia (Fig. 4) 461
Dog. Amputated hind leg. Canula in femoral artery, perfused with Ringer's solution, venous outflow recorded by means of tipping bucket (Fig. 5) 462
Ligature around portal vein. First continuous suture placed, second begun and dots showing its continuation (Fig. 1) 465
Second continuous suture finished. Mattress suture placed and scissors in position to enter (Fig. 2) 465
Effect of edestinose upon the excised cat heart (Fig. 1) 475
Effect of 0.5 per cent edestinose upon the excised cat heart (Fig. 2) 476
Effect of 2 per cent edestinose upon the excised cat heart (Fig. 3) 479
Effect of edestinose ash (2.0%) upon the excised cat heart (Fig. 4) 480
Effect of 4.0 per cent edestinose upon the frog heart in situ (Fig. 5) 481
Effect of alcohol soluble edestinose upon the frog heart (Fig. 6) 482
Effect of edestin-peptone upon the frog heart (Fig. 7) 483
Effect of 1.0 per cent alcohol-soluble caseose upon the frog heart (Fig. 8) 484
Effect of 2 per cent alcohol-soluble egg-albumin proteose upon the frog heart (Fig. 9) 487
Effect of fibrinose upon the frog heart (Fig. 10) 488
Effect of 2.0 per cent Witte peptone upon the frog heart (Fig. 11) 489
Small intestine from a non-sensitized guinea-pig treated with pure horse serum and with boiled serum (Fig. 1) 533
Small intestine from sensitized and from non-sensitized guinea-pigs treated with pure horse serum (Fig. 2) 554
Small intestine from a sensitized guinea-pig treated with pure and with boiled horse serum (Fig. 3) 559
Small intestine from a sensitized guinea-pig treated with pure and with boiled horse serum (Fig. 4) 560