Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
OtherChemotherapy, Antibiotics, and Gene Therapy

A mathematical model to investigate the effects of ceralasertib and olaparib in targeting the cellular DNA Damage responses pathway

Kira Pugh, Michael Davies and Gibin Powathil
Journal of Pharmacology and Experimental Therapeutics June 30, 2023, JPET-AR-2022-001558; DOI: https://doi.org/10.1124/jpet.122.001558
Kira Pugh
1Swansea University, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: g.g.powathil@swansea.ac.uk
Michael Davies
2AstraZeneca, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gibin Powathil
1Swansea University, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Gibin Powathil
  • For correspondence: g.g.powathil@swansea.ac.uk
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The ataxia-telangiectasia and Rad3-related (ATR) inhibitor ceralasertib and the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib have shown synergistic activity, in vitro, in the FaDu ATM-KO cell line. It was found that combining these drugs with lower doses and for shorter treatment periods induced greater or equal toxicity in cancer cells than using either as a single agent. Here, we develop a biologically-motivated mathematical model governed by a set of ordinary differential equations, considering the cell cycle-specific interactions of olaparib and ceralasertib. By exploring a range of different possible drug mechanisms, we have studied the effects of their combination as well as which drug interactions are the most prominent. After careful model selection, the model was calibrated and compared to relevant experimental data. We have used this developed model further to investigate other doses of olaparib and ceralasertib in combination, which can be potentially helpful in exploring optimised dosage and delivery.

Significance Statement Drugs that target cellular DNA damage repair pathways are now being used as new ways to maximise the effect of multimodality treatments such as radiotherapy. Here, we develop a mathematical model to investigate the effects of ceralasertib and olaparib, two drugs that target DNA damage response pathways.

  • Anti-cancer agents
  • computer modeling and simulation
  • DNA damage and repair
  • Copyright © 2023 American Society for Pharmacology and Experimental Therapeutics
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 387 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 387, Issue 1
1 Oct 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A mathematical model to investigate the effects of ceralasertib and olaparib in targeting the cellular DNA Damage responses pathway
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
OtherChemotherapy, Antibiotics, and Gene Therapy

Modelling the effects of DNA Damage Response Inhibitor Drugs

Kira Pugh, Michael Davies and Gibin Powathil
Journal of Pharmacology and Experimental Therapeutics June 30, 2023, JPET-AR-2022-001558; DOI: https://doi.org/10.1124/jpet.122.001558

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
OtherChemotherapy, Antibiotics, and Gene Therapy

Modelling the effects of DNA Damage Response Inhibitor Drugs

Kira Pugh, Michael Davies and Gibin Powathil
Journal of Pharmacology and Experimental Therapeutics June 30, 2023, JPET-AR-2022-001558; DOI: https://doi.org/10.1124/jpet.122.001558
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Targeting LGR5-Positive Cells in Ovarian Cancer
  • Ocular Palonosetron for Prevention of Nausea and Vomiting
  • PTP4A3 and Ovarian Cancer
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics