Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
OtherDrug Discovery and Translational Medicine

Fate determination role of erythropoietin and romiplostim in the lineage commitment of hematopoietic progenitors

Xiaoqing Fan, Wojciech Krzyzanski, Raymond S. M. Wong and Xiaoyu Yan
Journal of Pharmacology and Experimental Therapeutics April 30, 2022, JPET-AR-2022-001130; DOI: https://doi.org/10.1124/jpet.122.001130
Xiaoqing Fan
1School of Pharmacy, The Chinese University of Hong Kong, Hong Kong
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wojciech Krzyzanski
2Pharmaceutical Sciences, University at Buffalo, United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Raymond S. M. Wong
3Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Raymond S. M. Wong
Xiaoyu Yan
1School of Pharmacy, The Chinese University of Hong Kong, Hong Kong
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: xiaoyuyan@cuhk.edu.hk
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Erythropoietin (EPO) and thrombopoietin (TPO) have long been known to promote erythropoiesis and megakaryopoiesis, respectively. However, the fate changing role of EPO and TPO on megakaryocyte-erythroid progenitors (MEPs) to develop along the erythroid versus megakaryocyte (MK) lineage remains unclear. We have previously shown that EPO may have fate changing role because EPO treatment could induce progenitor cells depletion and resulted in EPO resistance. Therefore, we hypothesize that a combination of romiplostim, a TPO receptor agonist that could stimulate the expansion of progenitors, with EPO can treat EPO resistance. Using rats with anemia due to chronic kidney disease, we demonstrated that romiplostim synergized with EPO to promote red blood cells production while EPO inhibited platelet production in a dose-dependent manner to reduce the risk of thrombosis. Corroborating findings from in vivo, in vitro experiments demonstrated that romiplostim expanded hematopoietic stem cells and stimulated megakaryopoiesis, while EPO drove the progenitors toward an erythroid fate. We further developed a novel pharmacokinetic-pharmacodynamic model to quantify the effects of EPO and romiplostim on megakaryopoiesis and erythropoiesis simultaneously. The modeling results demonstrated that EPO increased the differentiation rate of MEPs into burst-forming unit-erythroid up to 22-fold, indicating that the slight increase of MEPs induced by romiplostim could be further amplified and recruited by EPO to promote erythropoiesis. The data herein support that romiplostim in combination with EPO can treat EPO resistance.

Significance Statement This study clarified that erythropoietin (EPO) drives the fate of megakaryocyte–erythroid progenitors (MEP) toward the erythroid lineage, thus reducing their megakaryocyte (MK) lineage commitment, whereas romiplostim, a thrombopoietin (TPO) receptor agonist (RA), stimulates megakaryopoiesis through the MK-committed progenitor and MEP bifurcation pathways simultaneously. These findings support an innovative combination of romiplostim and EPO to treat EPO-resistant anemia, because the combination therapy further promotes erythropoiesis compared to EPO monotherapy and inhibit platelet production compared to romiplostim monotherapy.

  • erythropoietin/ thrombopoietin
  • pharmacokinetic/pharmacodynamic modeling/PKPD
  • Copyright © 2020 American Society for Pharmacology and Experimental Therapeutics
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 381 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 381, Issue 2
1 May 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Fate determination role of erythropoietin and romiplostim in the lineage commitment of hematopoietic progenitors
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
OtherDrug Discovery and Translational Medicine

Fate determination role of erythropoietin and romiplostim

Xiaoqing Fan, Wojciech Krzyzanski, Raymond S. M. Wong and Xiaoyu Yan
Journal of Pharmacology and Experimental Therapeutics April 30, 2022, JPET-AR-2022-001130; DOI: https://doi.org/10.1124/jpet.122.001130

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
OtherDrug Discovery and Translational Medicine

Fate determination role of erythropoietin and romiplostim

Xiaoqing Fan, Wojciech Krzyzanski, Raymond S. M. Wong and Xiaoyu Yan
Journal of Pharmacology and Experimental Therapeutics April 30, 2022, JPET-AR-2022-001130; DOI: https://doi.org/10.1124/jpet.122.001130
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • SGS742 and Treatment of GHB Overdoses
  • Pharmacology of Antifentanyl mAb with Naloxone in Rats
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics