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ACC  Acetyl-CoA carboxylase 

ALT  Alanine aminotransferase 

AST  Aspartate aminotransferase 

BW  Body weight 

DMEM  Dulbecco’s modified Eagle medium 

DNL  De novo lipogenesis 

FAS  Fatty acid synthase 

FI  Food intake 

HTR2B  5-hydroxytryptamine receptor 2B  

KO  Knockout 

M-CoA  Malonyl-CoA 

MC  Methylcellulose 

MC4R  Melanocortin 4 receptor 

NAFLD  Nonalcoholic fatty liver disease 

NASH  Nonalcoholic steatohepatitis 

PG  Plasma glucose 

TC  Total cholesterol 

TG  Triglyceride 

WD  Western diet 
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WT  Wild-type 
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Abstract 

Acetyl-CoA carboxylase (ACC) 1 and ACC2 are essential rate-limiting enzymes that synthesize 

malonyl-CoA (M-CoA) from acetyl-CoA. ACC1 is predominantly expressed in lipogenic tissues and 

regulates the de novo lipogenesis flux. It is upregulated in the liver of patients with nonalcoholic fatty liver 

disease (NAFLD), ultimately leading to the formation of fatty liver. Therefore, selective ACC1 inhibitors 

may prevent the pathophysiology of NAFLD and nonalcoholic steatohepatitis (NASH) by reducing hepatic 

fat, inflammation, and fibrosis. Many studies have suggested ACC1/2 dual inhibitors for treating 

NAFLD/NASH; however, reports on selective ACC1 inhibitors are lacking. In this study, we investigated 

the effects of compound-1, a selective ACC1 inhibitor for treating NAFLD/NASH, using pre-clinical in 

vitro and in vivo models. Compound-1 reduced M-CoA content and inhibited the incorporation of [
14

C] 

acetate into fatty acids in HepG2 cells. Additionally, it reduced hepatic M-CoA content and inhibited DNL 

in C57BL/6J mice after a single dose. Further, compound-1 treatment for 8 weeks in western diet-fed 

melanocortin 4 receptor knockout mice—NAFLD/NASH mouse model—improved liver hypertrophy and 

reduced hepatic triglyceride content. The reduction of hepatic M-CoA by the selective ACC1 inhibitor was 

highly correlated with the reduction in hepatic steatosis and fibrosis. These findings support further 

investigations of the use of this ACC1 inhibitor as a new treatment for NFLD/NASH. 

 

Significance statement: 

This is the first study to demonstrate that a novel selective inhibitor of acetyl-CoA carboxylase 1 (ACC1) 
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has anti-nonalcoholic fatty liver disease (NAFLD) and anti-nonalcoholic steatohepatitis (NASH) effects in 

pre-clinical models. Treatment with this compound significantly improved hepatic steatosis and fibrosis in 

a mouse model. These findings support the use of this ACC1 inhibitor as a new treatment for 

NAFLD/NASH.   
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Introduction 

Nonalcoholic fatty liver disease (NAFLD) is a liver disease characterized by excessive fat 

accumulation in hepatocytes that is not caused by alcohol consumption (Friedman et al., 2018; Vernon et 

al., 2011). Nonalcoholic steatohepatitis (NASH) is a sub-category of NAFLD and is defined on the basis of 

the following liver biopsy histological features: lobular inflammation, hepatocellular ballooning, fibrosis, 

and steatosis (Williams et al., 2011; Siddiqui et al., 2018). Since NAFLD and NASH are associated with 

cirrhosis and hepatocellular carcinoma (Anstee, 2013), they also represent important factors that contribute 

to the recent increase in liver-related morbidity and mortality. 

The global prevalence of NAFLD has continued to increase annually with 25% of the world 

population affected in 2018 (Younossi et al., 2019). Although up to 30% of the patients with NAFLD 

develop NASH (Calzadilla Bertot and Adams, 2016), no anti-NAFLD/NASH drugs have been approved 

(Sanyal et al., 2010; Cusi et al., 2016; Esler and Bence, 2019), thus resulting in an unmet medical need. 

Hepatic steatosis is caused by an imbalance in hepatic lipid metabolism favoring the storage of lipids 

within the liver (Cohen et al., 2011), which triggers hepatic inflammation and, subsequently, fibrosis, 

which drives NASH progression. Furthermore, metabolic syndromes, such as obesity, insulin resistance, 

and dyslipidemia, represent the major risk factors for the development of NAFLD/NASH. Therefore, 

multiple clinical trials are focusing on correcting the dysfunctional lipid metabolism via the application of 

lipid metabolism pathway modulators, nuclear hormone receptor agonists, and glycemic modulators (Esler 

and Bence, 2019). 
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Acetyl-CoA carboxylase (ACC) is an essential rate-limiting enzyme in fatty acid metabolism that 

catalyzes the carboxylation of acetyl-CoA to form malonyl-CoA (M-CoA) (Brownsey et al., 1997). 

Mammals have two ACC isoforms. ACC1 is localized in the cytosol and predominantly expressed in 

lipogenic tissues, such as the liver and adipose tissue; whereas ACC2 is localized in the mitochondrial 

surface and is predominantly expressed in oxidative tissues, including skeletal muscle and heart, and to 

some extent, in the liver and adipose tissues (Abu-Elheiga et al., 2001). M-CoA produced by ACC1 is an 

intermediate in de novo lipogenesis (DNL) and acts as a substrate for fatty acid synthase (FAS) in acyl 

chain elongation (Mao et al., 2006). Furthermore, M-CoA produced by ACC2 inhibits carnitine 

palmitoyltransferase 1, which participates in regulating fatty acid β-oxidation (Abu-Elheiga et al., 2001, 

2003). Indeed, several studies have shown that liver-specific ACC1 knockout (KO) mice have reduced 

hepatic DNL, M-CoA, and triglyceride (TG) accumulation (Mao et al., 2006; Harada et al., 2007), whereas 

ACC2 KO mice exhibit increased fatty acid oxidation coupled with elevated whole-body energy 

expenditure and improved whole-body adiposity compared to wild-type mice (Choi et al., 2007; 

Abu-Elheiga et al., 2001).  

Recently, several ACC1/2 dual inhibitors have been investigated for treating NAFLD/NASH in 

pre-clinical and clinical studies (Chen et al., 2019; Esler et al., 2019), many of which have reported that 

these dual inhibitors induce undesirable effects, including plasma TG elevation, which may be caused by 

excessive suppression of ACC activity. However, the anti-NAFLD/NASH effect of selective ACC1 

inhibitors has not been evaluated in pre-clinical or clinical studies to understand whether the therapeutic 
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window for ACC1 inhibitors would be greater than that for ACC1/2 inhibitors.  

To support the efficacy of an ACC1 inhibitor, selective ACC1 suppression using antisense 

oligonucleotides demonstrated both reduced triglyceride synthesis and increased fat oxidation in primary 

rat hepatocytes (Savage et al., 2006). Furthermore, hepatic DNL is markedly higher in patients with 

NAFLD than in healthy subjects (Donnelly et al., 2005; Fabbrini et al., 2008; Lambert et al., 2014). Lastly, 

ACC1, not ACC2, expression has been reported as upregulated in the liver of NAFLD patients (Kohjima et 

al., 2007). These data suggest that ACC1 inhibition alone could have the potential to improve hepatic 

steatosis and fibrosis.  

Recently, Mizojiri et al. (2018) generated a systemic selective human ACC1 inhibitor, compound-1 

(selectivity more than 17,000-fold over that for human ACC2). To investigate the anti-NAFLD/NASH 

effect of ACC1 inhibition, we evaluated the effect of compound-1 on M-CoA production and hepatic DNL 

in vitro and in vivo. Additionally, we investigated the effects of compound-1 on hepatic steatosis and 

fibrosis by using western diet (WD)-fed melanocortin 4 receptor (MC4R) KO mice, a genetic and 

obesogenic dietary model that mimics the human pathophysiology of NAFLD/NASH with obesity, insulin 

resistance, and excessive lipid accumulation, as well as enhanced liver fibrosis (Itoh et al., 2011; Konuma 

et al., 2015; Shiba et al., 2018). Taken together, these data are supportive of the critical role of ACC1 in the 

pathophysiology of liver diseases.  
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Materials and Methods 

Compounds 

Compounds used in the study were synthesized by Takeda Pharmaceutical Company Limited 

(Kanagawa, Japan). In the animal studies, compounds were suspended in 0.5% methylcellulose (MC). 

 

Mouse and human ACC enzyme assays 

Compounds were dissolved in dimethyl sulfoxide (DMSO) and then diluted with an enzyme reaction 

buffer [50 mM HEPES (pH 7.5), 10 mM MgCl2, 10 mM tripotassium citrate, 2 mM dithiothreitol, and 

0.001% fatty acid-free bovine serum albumin]. Recombinant mouse ACC1 or ACC2 produced by Sf-9 

cells was diluted with the enzyme reaction buffer to 0.8 μg/mL and 0.1 μg/mL, respectively. A 5 

μL-aliquot of the compound solution was added to each well of a 384-well assay plate, and 10 μL of the 

enzyme mixture was added to each well. The mixture was incubated at room temperature for 60 min. Next, 

a substrate solution (50 mM KHCO3, 200 μM ATP, and 5 μL of 200 μM acetyl-CoA) was added to each 

well, and the mixture was reacted at room temperature for 15 min. The reaction was stopped by adding 40 

μL of stop solution (1.3% formic acid, 0.2 μM malonyl-
13

C3-CoA; 655759; Fujifilm Wako Pure Chemical 

Industries, Osaka, Japan) to each of the obtained reaction mixtures. The production of M-CoA was 

detected using RapidFire mass spectrometry (API4000; Sciex, Tokyo, Japan) and corrected with 

malonyl-
13

C3-CoA. The IC50 values were calculated using XLfit from the data expressed as inhibition (%) 

by using fit Model 204 (4 Parameter Logistic Model). The IC50 values of the inhibitors were converted to 
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pIC50 [log (1/IC50)] and used as the dependent variable for correlation analysis. The response of vehicle 

control was considered as 0% inhibition, and that without enzyme was considered as 100% inhibition. The 

human ACC enzyme assay was performed following the protocol reported in a previous study (Mizojiri et 

al., 2018). 

 

Cell culture 

The human hepatoma-derived cell line, HepG2, was purchased from the American Type Culture 

Collection (HB-8065; Manassas, VA, USA). The cells were incubated in Dulbecco’s modified Eagle 

medium (DMEM) (10567014; Thermo Fisher Scientific, Tokyo, Japan) containing 10% fetal bovine serum 

(SH30084.03; Hyclone Laboratories Inc., Logan, UT, USA), penicillin, and streptomycin under 5% CO2 at 

37 . 

 

Measurement of M-CoA content in HepG2 cells 

HepG2 cells were plated in a 12-well plate at 2.4  10
5
 cells/well and incubated for 48 h under 5% 

CO2 at 37 . After the medium was removed, cells were incubated with DMSO or compound-1 in the 

assay medium (DMEM containing 0.09% fatty acid-free bovine serum; 017-22231; Fujifilm Wako Pure 

Chemical Industries, Osaka, Japan) for 2 h. Next, the cells were washed with 500 �L of ice-cold 

phosphate-buffered saline (PBS), and 1200 �L of ice-cold 6% hydrogen peroxide was added to lyse the 

cells. After the cell lysates were collected in tubes, samples were immediately stored at -80  until 
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analysis. Refer to the experimental section on M-CoA for the measurements. 

 

Measurement of DNL in HepG2 cells 

HepG2 cells were plated in a 24-well plate at 1.5 × 10
5
 cells/well and incubated for 24 h under 5% 

CO2 at 37 . The cells were washed twice with 500 �L of PBS and incubated with DMSO or 

compound-1 in assay medium (DMEM containing 0.09% fatty acid-free bovine serum) for 1 h. 

Subsequently, 5 �L of 
14

C-acetate (25 mM, 10 �Ci/�mol) was added and incubated for 2 h at 37 . After 

the cells were washed twice with 500 �L of PBS, 500 �L of 0.5 N NaOH was added to lyse the cells. Next, 

200 �L of 50% KOH and 1000 �L of EtOH were added to the cell lysate and incubated for 1 h at 70  

for saponification. Next, 1000 �L of H2O was added, followed by the addition of 4000 �L of petroleum 

ether. After the organic layers were collected, HCl was added to the aqueous layer to adjust the pH to 

below 4. Subsequently, 4000 �L of petroleum ether was added, and the organic layers were collected. The 

pooled organic layers were dried using N2 gas and resuspended in a scintillation A cocktail. Radioactivity 

was measured using liquid scintillation counting in 3110 TR (PerkinElmer Inc., Waltham, MA, USA). 

 

Animals 

Animal experiments were approved by the Institutional Animal Care and Use Committee of Shonan 

Research Center, Takeda Pharmaceutical Company Limited (Kanagawa, Japan), and conformed to the 

guidelines of the US National Institutes of Health—Guide for the Care and Use of Laboratory Animals. 
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Male C57BL/6J mice were purchased from Charles River Laboratories, Japan (Yokohama, Japan) and 

fed normal chow (CE-2; CLEA Japan, Inc., Tokyo, Japan). Male Mc4r null (MC4R KO) mice were 

generated following a previous study (Matsumoto et al., 2020). MC4R KO mice and wild-type littermate 

mice were fed CE-2. All animals were housed in a group under controlled conditions including a 12 h/12 h 

light/dark cycle at 20–26  and humidity of 40–70%; they were allowed free access to food and tap 

water. 

 

Evaluation of the effect of a single dose of compound-1 on hepatic M-CoA in CE-2-fed C57BL/6J mice 

(dose-response study) 

For this, 7-week-old CE-2-fed C57BL/6J mice were divided into eight groups of five mice each based 

on body weight (BW) and BW change during habituation. Mice were orally administered (10 mL/kg 

volume) with vehicle (0.5% MC), compound-1, or compound-2, and sacrificed after 2 h of treatment under 

isoflurane anesthesia. Blood samples were collected from the abdominal vena cava and centrifuged at 

13,000 × g for 5 min at 4  to collect plasma, which was stored at −80  for pharmacokinetic analysis. 

After the liver weight was measured, liver samples were immediately frozen in liquid nitrogen and stored 

at −80  for M-CoA measurement and pharmacokinetic (PK) analysis. Refer to the M-CoA and PK 

experimental section for the measurements. 

 

Evaluation of the effect of a single dose of compound-1 on hepatic DNL in WD-fed C57BL/6J mice 
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For this, 7-week-old mice were divided into four groups of three mice each based on BW after they 

were fed WD (D12079B; Research Diets, Inc., New Brunswick, NJ, USA) for 3 days. Mice were orally 

administered (10 mL/kg volume) vehicle (0.5% MC) or compound-1 (10 mg/kg) and intraperitoneally 

administered 
14

C-acetate (400 �Ci/5 mL/kg) after 1 h of treatment. Mice were sacrificed after 2 or 5 h of 

drug treatment under isoflurane anesthesia. The radioactivity of the fatty acid fraction in the liver was 

measured according to a previous study (Harwood et al., 2003).  

 

Repeated dose study of compound-1 in WD-fed MC4R KO mice 

For this, 9-week-old MC4R KO mice were fed WD, and wild-type (WT) mice were fed CE-2. At the 

age of 23 weeks, WD-fed MC4R KO mice were divided into four groups of eight mice each based on BW, 

food intake (FI), plasma glucose (PG), triglyceride (TG), total cholesterol (TC), aspartate aminotransferase 

(AST), alanine aminotransferase (ALT), and insulin at day −3. Mice were orally administered (5 mL/kg 

volume) vehicle (0.5% MC) or compound-1 (3, 10, and 30 mg/kg) once daily for 8 weeks. 

BW and FI were monitored every 3–4 days. On days 17, 31, and 56, blood samples were collected 

from the tail vein for the measurement of plasma parameters. PG, TG, TC, AST, and ALT were 

enzymatically measured using an Autoanalyzer 7180 (Hitachi High-Technologies Corporation, Tokyo, 

Japan). Plasma insulin levels were measured using sandwich enzyme-linked immunosorbent assay 

(ELISA; Shibayagi, Gunma, Japan, or Morinaga Institute of Biological Science, Kanagawa, Japan). 

For pharmacokinetic analysis, blood samples were collected from the tail vein at day 56. Blood 
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samples were centrifuged at 13,000 × g for 5 min at 4  to collect plasma, which was stored at −80  

for pharmacokinetic analysis. Refer to the PK experimental section for the measurements. 

Mice were sacrificed under isoflurane anesthesia on day 0 (pre) and day 60. Blood samples were 

collected from the abdominal vena cava and centrifuged at 13,000 × g for 5 min at 4  to collect plasma, 

which was stored at −80  for the measurement of parameters. After the liver weight was measured, liver 

samples were immediately frozen in liquid nitrogen and stored at −80 . For histopathological analysis, 

liver samples were stored in 10% neutral buffered formalin. 

The hepatic TG content was measured as follows. First, 900 �L of saline was added to 100 mg liver 

tissue and homogenized (27 Hz, 2 min) with zirconia beads. The homogenate (200��L) was mixed 

thoroughly with 600 �L of CHCl3:MeOH (1:2) for 30 min. After 200 �L of CHCl3 and 200 �L of H2O 

were added to the mixed homogenate, it was stirred for 10–30 min. After centrifugation (12,000 × g, 2 min, 

room temperature), the CHCl3 layers were collected, and 50 �L was dried under N2 gas and resuspended in 

isopropanol (80 �L for WT mice sample and 300 �L for MC4R KO mice sample). Extracted triglyceride 

content was measured using the Triglyceride-E test (432-40201; Fujifilm Wako Pure Chemical Industries, 

Osaka, Japan). 

The hepatic collagen levels were measured using a commercially available kit (QZBTOTCOL1; 

Quickzyme Biosciences, Leiden, Netherlands) according to manufacturer’s instructions. 

The percentage of hepatic Sirius red-positive area was measured as follows. Liver samples fixed with 

10% neutral buffered formalin were embedded in paraffin. Liver histology was assessed in 4-�m-thick 
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sections stained with hematoxylin-eosin (HE) and Sirius red. The Sirius red-positive areas were quantified 

using four randomly selected fields per liver sample by using the WinROOF software (Mitani Co., Tokyo, 

Japan). Histological analysis was conducted in a randomized and double-blinded manner. 

Hepatic mRNA levels were measured as follows. Total RNA was isolated from the liver samples that 

were stored in RNA later by using a Lipid Tissue Mini kit (Qiagen, Tokyo, Japan). Reverse transcription 

reactions were performed using a SuperScript VILO cDNA synthesis kit (Thermo Fisher Scientific, Tokyo, 

Japan), according to manufacturer’s instructions. Gene expression was quantified using TaqMan real-time 

PCR (ABI7900; Thermo Fisher Scientific, Tokyo, Japan) using Platinum qPCR SuperMix-UDG (Thermo 

Fisher Scientific, Tokyo, Japan) and primers/Taqman probe sets (Thermo Fisher Scientific, Tokyo, Japan). 

The following primer-probe sets were used: monocyte chemoattractant protein-1 (Ccl2; MCP-1, 

Mm00441242_m1), Adgre1 (F4/80, Mm00802529_m1), collagen type1 alpha1 (Col1�1; 

Mm00801666_g1), collagen type1 alpha2 (Col1�2; Mm00483888_m1), alpha-smooth muscle actin 

(Acta2; �SMA, Mm00725412_s1), transforming growth factor-beta 1 (Tgf�1; TGF-�1, Mm01178820_m1), 

acetyl-coenzyme A carboxylase alpha (Acaca; ACC1, Mm01304257_m1), acetyl-coenzyme A carboxylase 

beta (Acacb; ACC2, Mm01204671_m1), FAS (Fasn; Mm00662319_m1), stearoyl-coenzyme A desaturase 

1 (Scd1; Mm00772290_m1), and Rplp0 (36B4, Mm00725448_s1). The relative gene expression was 

calculated using the ΔΔCt method and normalized to Rplp0 expression.  

 

Measurement of cellular or hepatic M-CoA 
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Tissue samples were homogenized in 6% perchloric acid containing malonyl-
13

C3-CoA 

(Sigma-Aldrich, St. Louis, MO, USA) as an internal standard. After centrifugation, the supernatant was 

subjected to solid-phase extraction by using an Oasis HLB Extraction Cartridge (Waters, Milford, MA, 

USA). The analyte was eluted with acetonitrile and supplemented with dibutylammonium acetate (Tokyo 

Chemical Industries, Tokyo, Japan), followed by rinsing of the column with ultrapure water. The eluate 

was dried under a stream of nitrogen, and the residue was reconstituted in 100 �L of ultrapure water. An 

aliquot of 10 �L was injected into the liquid chromatography-tandem mass spectrometry (LC-MS/MS) 

system, which consisted of a Shimadzu LC-20AD HPLC system (Shimadzu, Kyoto, Japan) and an 

API5000 or API5500 mass spectrometer (AB Sciex, Foster City, CA, USA). The analytical column was a 

CAPCELL CORE C18 column (2.7 �m, 2.1 × 50 mm; Shiseido, Kanagawa, Japan) used at 40 . The 

mobile phases consisted of (A) 50 mM ammonium carbonate/ammonium hydroxide (pH 9) supplemented 

with dibutylammonium acetate and (B) acetonitrile. The analyte was eluted using a gradient of 95% 

solvent A/5% solvent B to 5% solvent A/95% solvent B. The flow rate of the mobile phase was 0.3 

mL/min. Detection was performed using multiple reaction monitoring in the positive ionization mode 

[selected reaction monitoring m/z = 854.1  347.1 or 854.1  303.3 for M-CoA and m/z = 857.2  

350.2 for malonyl-
13

C3-CoA (internal standard)]. Analyst
TM

 software (version 1.6.2, AB Sciex) was used 

for data acquisition and processing. The concentration of compounds in each sample was back-calculated 

using a calibration curve generated from a series of calibration standards. 
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Statistical analysis 

All data in the graph are represented as means ± SDs. Statistical analyses were performed in EXSUS 

ver.8.0 in combination with SAS ver. 9.3 or GraphPad PRISM software. To evaluate the effects of 

compound-1 in vivo, we analyzed the statistical differences between vehicle and drug treatment in 

C57BL/6J mice or MC4R KO mice using Student’s t-test, Aspin–Welch test, Dunnett’s test, and Steel’s test. 

To confirm the establishment of the disease state, we analyzed the statistical differences between WT mice 

and vehicle by using Student’s t-test or Aspin–Welch test. For all tests, p-values of <0.05 were considered 

statistically significant. The correlation between hepatic M-CoA content and hepatic TG, hepatic M-CoA 

content and hepatic collagen were analyzed using Pearson’s correlation coefficient. 
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Results 

Inhibition of mouse ACC1 and ACC2  

The inhibitory activities of compound-1 and compound-2 (dual ACC1/2 inhibitor) (Kamata et al., 

2012) on recombinant mouse ACC1 and ACC2 enzymes were evaluated. Compound-1 inhibited 

recombinant human ACC1 and ACC2 at IC50 values of 0.58 nM and > 10,000 nM, respectively (Mizojiri et 

al., 2018), as well as mouse ACC1 and ACC2 with IC50 values of 1.9 nM and > 10,000 nM, respectively 

(Table 1). Conversely, compound-2 inhibited mouse ACC1 and ACC2 with IC50 values of 6.0 nM and 6.4 

nM, respectively. These results indicate that compound-1 is selective for ACC1 inhibition, whereas 

compound-2 inhibits both ACC1 and ACC2.  

 

Effect of compound-1 on M-CoA content and DNL in HepG2 cells 

To assess the effect of compound-1 on M-CoA content and DNL in cultured cells, we investigated the 

effect of compound-1 on M-CoA production and [
14

C] acetate incorporation into fatty acids in HepG2 cells. 

Compound-1 decreased the M-CoA content in cells with IC50 of 16.0 nM (Figure 1A) and inhibited [
14

C] 

acetate incorporation into fatty acids with IC50 of 12.7 nM (Figure 1B) in a dose-dependent manner. In 

addition, the unbound fraction of compound-1 in the medium was 0.09. The estimated unbound 

compound-1-based IC50 when compound-1 inhibited M-CoA production and [
14

C] acetate incorporation 

was 1.44 nM and 1.14 nM, respectively.  
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Effect of compound-1 on hepatic M-CoA content and DNL in C57BL/6J mice 

M-CoA is formed from acetyl-CoA by ACC, and the hepatic M-CoA level could be used as a 

pharmacodynamic marker of ACC inhibition (Harriman et al., 2016; Glien et al., 2011). Therefore, we 

assessed the ability of compound-1 to suppress hepatic M-CoA content in C57BL/6J mice, which were fed 

normal chow. At 2 h after a single dose, compound-1 significantly and dose-dependently decreased hepatic 

M-CoA content from the lowest tested dose of 0.3 mg/kg. The efficacy of compound-1 tended to plateau at 

approximately 30 mg/kg, and a maximum reduction of −64% was noted at 100 mg/kg (Figure 2A). 

Conversely, compound-2 (100 mg/kg, to achieve >85% inhibition), an ACC1/2 dual inhibitor, reduced 

hepatic M-CoA by 88% compared to vehicle (Figure 2A). To analyze the correlation between compound-1 

blood exposure and hepatic M-CoA reduction, we measured the plasma concentration of compound-1 at 2 

h after dose. We already confirmed that the plasma and hepatic concentrations of compound-1 were similar 

in a separate time-course study. Thus, the plasma concentration can be used as the index for analyzing the 

pharmacokinetics and pharmacodynamics (data not shown). The IC50 of hepatic M-CoA reduction was 

1.88 μg/mL (0.90 mg/kg) of plasma concentration in C57BL/6J mice (Supplementary Table 1). The 

exploratory in vitro study suggested high plasma protein binding of compound-1 to mice plasma and the 

estimated unbound compound-1-based IC50 was less than 5 nM. We also confirmed that compound-1 (10 

mg/kg) did not change the M-CoA content in muscles where ACC2 is predominantly expressed 1 h after a 

single dose (data not shown). 

To assess DNL inhibition by compound-1 in vivo, we evaluated the inhibition of [
14

C] acetate 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on September 17, 2021 as DOI: 10.1124/jpet.121.000786

 at A
SPE

T
 Journals on A

pril 9, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


incorporation into fatty acids in mice that were fed WD. Compound-1 (10 mg/kg) inhibited hepatic fatty 

acid synthesis in WD-fed C57BL/6J mice by 77.6% and 67.8% at 2 and 5 h after oral administration, 

respectively (Figure 2B).  

Based on these pharmacodynamic results, we selected the doses of 3, 10, and 30 mg/kg for the 

repeated dose study to investigate the anti-NAFLD/NASH effect of compound-1 in WD-fed MC4R KO 

mice. 

 

Compound-1 improves hepatic steatosis and fibrosis in WD-fed MC4R KO mice 

To evaluate the effects of compound-1 on NAFLD/NASH, we orally administered compound-1 to 

WD-fed MC4R KO mice once daily for 8 weeks at doses of 3, 10, and 30 mg/kg.  

The liver weight and hepatic TG content in WD-fed MC4R KO mice were significantly higher than 

those in WT mice (Figure 3A and 3B). The total liver weights in compound-1 (3, 10, and 30 mg/kg)-treated 

groups were reduced by 9.1%, 23.8%, and 57.1%, respectively, compared to that in the vehicle-treated 

group (Figure 3A). In addition, consistent with the improvement of the appearance of fatty liver (data not 

shown), compound-1 significantly reduced the total hepatic TG at doses of 10 and 30 mg/kg (Figure 3B). 

These results indicate that compound-1 improves liver hypertrophy and steatosis.  

All animals in the compound-1 (30 mg/kg)-treated group showed abnormal findings, such as dryness 

of the tail, loss of fur around the chest, and flushing of the face on day 56 (data not shown). No other 

abnormalities were observed in terms of anatomy and appearance. Only at 30 mg/kg did compound-1 
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treatment significantly decrease BW without reducing the cumulative FI (Figure 3C and 3D); however, the 

BW reduction was not correlated with the severity of skin toxicity. 

The plasma parameter levels were evaluated before and after the 8-week treatment of compound-1 

(Table 2). At the start of drug treatment, plasma AST and ALT, which are hepatic enzymes that could be 

used as markers of hepatocellular injury (Zechini et al., 2004), and TC levels were higher in WD-fed 

MC4R KO mice than in WT mice. In contrast, plasma TG levels were lower in WD-fed MC4R KO mice 

than in WT mice. These data suggested that WD-fed MC4R KO mice exhibited hepatocellular injury and 

lipid metabolism disruption.  

Compound-1 treatment markedly decreased plasma AST, ALT, and TC levels in a dose-dependent 

manner, whereas the treatment increased plasma TG concentrations compared to those in the 

vehicle-treated group. However, plasma TG levels in the compound-1-treated mice never reached 

statistically significant increased values over those observed in the WT mice.  

The plasma concentration and pharmacokinetic parameters of compound-1 before and after the final 

dose are shown in Supplementary Table 2.  

To evaluate the effects of compound-1 on markers of inflammation and fibrosis, we measured the 

mRNA expression of MCP-1 and F4/80 as markers of inflammation and that of Col1�1, Col1�2, �SMA, 

and TGF-�1 as markers of fibrosis activity in the liver. In addition, we evaluated the expression of 

lipogenesis-related genes, including ACC1 and ACC2 in the liver. Compared to WT mice, WD-fed, 

vehicle-treated MC4R KO mice showed remarkable elevation in the expression levels of MCP-1, F4/80, 
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Col1�1, Col1�2, �SMA, and TGF-�1 (Figure 4), suggesting progression to NASH with macrophage 

infiltration induced by MCP-1 which are hypothesized to be induced by hepatic steatosis, were observed in 

this mouse model. In addition, we confirmed that the expression of ACC1, Fasn, and Scd1 was increased in 

this model (Supplementary Figure 1); these are consistent with the findings of previous studies (Itoh et al., 

2011; Konuma et al., 2015; Shiba et al., 2018). Compound-1 significantly decreased the gene expression 

levels of MCP-1, F4/80, Col1�1, Col1�2, �SMA, and TGF-�1 (Figure 4), whereas it increased those of 

ACC1, ACC2, Fasn, and Scd1 (Supplementary Figure 1). 

We measured the hepatic M-CoA content as a PD marker at 20 h after the final dose in WD-fed 

MC4R KO mice. Compound-1 dose-dependently reduced hepatic M-CoA content, and the maximum 

efficacy was observed in the 30 mg/kg group, which was 62% lower than that in the vehicle-treated group 

(Figure 5). 

In addition, we investigated the anti-fibrotic effect of compound-1 by conducting biochemical and 

histological analyses in the liver. Hepatic collagen content and Sirius red-positive area were significantly 

higher in WD-fed MC4R KO mice than in WT mice (Figure 6A, 6B, and 6C). Compound-1 significantly 

decreased hepatic collagen (mg/liver) at doses of 10 and 30 mg/kg and Sirius red-positive area at doses of 

3 and 10 mg/kg. Notably, hepatic M-CoA reduction was correlated with the decrease in hepatic TG and 

collagen (Figure 6D and 6E, R
2
 = 0.5716 ****p < 0.0001 and R

2
 = 0.5472 ****p < 0.0001).  
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Discussion 

Hepatic DNL is markedly higher in NAFLD patients than in healthy individuals (Donnelly et al., 

2005; Fabbrini et al., 2008; Lambert et al., 2014), and ACC1—the rate-limiting enzyme for hepatic 

DNL—is upregulated in NAFLD patients (Kohjima et al., 2007), suggesting that abnormal ACC1 activity 

contributes to the pathogenesis of fatty liver, a key feature of NAFLD. In the current study, compound-1, a 

novel selective ACC1 inhibitor, was found to influence hepatic M-CoA concentrations, which in turn 

reduced hepatic lipid accumulation and prevented hepatic fibrosis in WD-fed MC4R KO mice. 

First, we determined that compound-1 is highly selective, at the enzyme level, for mouse ACC1, not 

ACC2, thus providing a candidate molecule for further studies on the biological function of ACC1. We 

also confirmed the effect of compound-1 on the pharmacodynamic marker M-CoA in a liver cell model 

indicating that ACC1 inhibition is sufficient to reduce intracellular M-CoA concentrations. The cellular 

M-CoA production and subsequent fatty acid synthesis were dose-dependently suppressed by compound-1 

treatment. Therefore, compound-1 inhibits M-CoA content and fatty acid synthesis in hepatocytes by 

selectively blocking ACC1 and could represent a potential therapeutic strategy for improving hepatic 

steatosis. 

To confirm that the reduced in vitro DNL translates in vivo, we administered a selective ACC1 

inhibitor to C57BL/6J mice. Hepatic M-CoA concentrations negatively correlated with the plasma 

concentration of compound-1 and fatty acid synthesis, which were measured by the incorporation of 

acetate into lipids, was significantly suppressed by compound-1 treatment (10 mg/kg; Figure 2 and 
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Supplementary Table 1). In addition, we confirmed the ACC1 selectivity for compound-1 in vivo by 

comparing its effect on the reduction in M-CoA levels in the liver and muscles. These results support that 

compound-1 inhibits DNL via ACC1 inhibition in vivo and corroborates the in vitro results. 

We also evaluated the impact of ACC1 inhibition on steatosis and fibrosis through repeated 

compound-1 dosing in a genetic and diet-induced WD-fed MC4R KO mouse model. This model shows 

multiple histopathological features common to NASH patients, including hepatic steatosis, inflammation, 

and fibrosis. Further, the expression of liver lipogenesis-related genes, including ACC1, are elevated in this 

mouse model compared to WT control mice (Itoh et al., 2011; Konuma et al., 2015; Shiba et al., 2018). 

The reported pathological features in this model were also noted in our WD-fed MC4R KO mice. In 

contrast to the increased ACC1 expression, expression of ACC2 was unchanged in the livers of model mice 

compared to that in WT mice (Supplementary Figure 1). This is consistent with the findings of a previous 

study on human NAFLD patients (Kohjima et al., 2007), suggesting that ACC1 might contribute more 

strongly to NAFLD progression than ACC2.  

Following 8 weeks of compound-1 treatment, hepatic TG accumulation was attenuated and plasma 

AST and ALT levels were significantly reduced, indicating that ACC1 inhibition improved hepatic 

steatosis resulting in ameliorated hepatocellular damage. Furthermore, compound-1 reduced the mRNA 

expression of genes related to inflammation and collagen synthesis marker levels, hepatic collagen content, 

and Sirius red-positive area, suggesting that ACC1 inhibition can also reduce inflammation and fibrosis 

progression either directly by its inhibition in non-hepatocytes or indirectly by reducing the hepatic lipid 
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content (Bates et al., 2020). Indeed, we observed a correlation between reduced M-CoA concentration via 

ACC1 inhibition and reduced hepatic TG and collagen content. Cumulatively, these results suggest that 

inhibiting hepatic DNL by selective ACC1 inhibition may represent a viable strategy for treating 

NAFLD/NASH.  

Although the Sirius red-positive area was not reduced following treatment with 30 mg/kg of 

compound-1, this may not be attributed to the diminished antifibrotic efficacy but rather, the remarkable 

improvement of liver hypertrophy, which increases the total analysis area per analysis unit screen at 30 

mg/kg compared to that in the other groups. Indeed, fibrosis gene expression and total hepatic collagen 

content were dose-dependently decreased following compound-1 treatment. However, further studies are 

needed to address the discrepancy between the hepatic collagen content and Sirius red-positive area.  

BW loss was observed in WD-fed MC4R KO mice treated with 30 mg/kg compound-1 compared to 

vehicle-treated mice. Although the improvement in hepatic hypertrophy could be partially considered as a 

cause of the BW loss, we hypothesize that compound-dependent toxicities account for the primary cause at 

the highest dose. Heterozygous ACC1 mutant mice and liver-specific ACC1-deficient mice did not show 

BW reduction compared to WT mice (Abu-Elheiga et al., 2005; Harada et al., 2007) indicating that the 

inhibition of ACC1 in the liver is not responsible for the reduced BW. We further evaluated the specificity 

of compound-1 for 72 panels, including G-protein-coupled receptor, kinase, non-kinase enzyme, ion 

channel, transporter, and nuclear hormone receptor up to concentrations of 10 �M, and the compound 

corresponded to only 5-hydroxytryptamine receptor 2B (HTR2B) (IC50 = 3.3 �M; data not shown). 
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However, this efficacy of HTR2B is not expected to have contributed to the observed in vivo toxicity as the 

estimated unbound fraction-based Cmax at 30 mg/kg in WD-fed MC4R KO mice was less than 160 nM, 

which was > 20-fold lower than the in vitro IC50 against HTR2B.  

We were unable to discern the impact of weight loss observed with 30 mg/kg compound-1 on the 

improvement in NASH caused by ACC1 inhibition. Previously we confirmed that 15% calorie restriction 

resulted in 11.6% reduction in BW without significantly reducing plasma ALT and AST levels or hepatic 

collagen content in WD-fed MC4R KO mice compared to animals fed ad libitum (data not shown). 

However, marked BW loss (> 10%) improved fibrosis in NAFLD/NASH patients (Mummadi et al., 2008, 

Glass et al., 2015). Therefore, further studies are needed to confirm whether BW loss or ACC1 inhibition 

was responsible for the anti-NASH effect of compound-1 at 30mg/kg.  

Many pre-clinical and clinical studies have shown that ACC1/2 dual inhibitors increase plasma TG 

concentrations, which may be a signaling cascade that upregulates TG re-esterification genes and flux 

(Kim et al., 2017; Bergman et al., 2020; Mitsuharu et al., 2020; Chen et al., 2019; Goedeke l et al., 2018). 

Indeed, compound-1 significantly increased the expression of ACC1, Fasn, and Scd1, which are SREBP1c 

target genes. However, compound-1 did not significantly elevate plasma TG concentrations compared to 

WT mice (Table 2). We also confirmed that repeated compound-1 dosing for 8 weeks did not increase 

plasma TG levels in the AMLN diet-fed DIO-NASH model, a diet-induced pre-clinical NAFLD/NASH 

mouse model, compared to those in lean and vehicle-treated mice (data not shown). As serum TG 

concentrations are not increased by ACC1/2 inhibitors at a dose that partially inhibits hepatic DNL 
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(Bergman et al., 2020), and the cellular specific hepatic M-CoA level is compensated by ACC2 activity 

under ACC1 inhibition conditions (Mao et al., 2006; Harada et al., 2007), one possible explanation for this 

difference in plasma TG elevation between ACC1/2 inhibitors and a selective ACC1 inhibitor might be that 

the latter is unable to fully suppress hepatic M-CoA production due to the flux via ACC2. In our study, the 

maximum M-CoA-lowering effect by selective ACC1 inhibition was less than that by ACC1/2 inhibition. 

In addition, hepatic ACC2 expression was dose-dependently induced by compound-1 after repeated dosing 

in WD-fed MC4R KO mice (Supplementary Figure 1). Although further investigations are required, these 

data suggest that a selective ACC1 inhibitor could improve hepatic steatosis and fibrosis without causing 

plasma TG elevation as ACC2 compensates the hepatic M-CoA level under ACC1 inhibition, thereby 

preventing any secondary feedback including increased circulating TGs. 

In conclusion, to our knowledge, this is the first study to show that a selective ACC1 inhibitor has 

sufficient efficacy in pre-clinical models, thus providing a viable approach for treating NAFLD/NASH. 

The data demonstrate a robust reduction in hepatic steatosis and fibrosis in our pre-clinical animal models. 

In addition, selective ACC1 inhibition mitigates the increased TG concentrations observed with ACC1/2 

inhibitors in clinical studies. These findings support the ACC1 inhibitor as a potential novel treatment for 

NAFLD/NASH.  

  

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on September 17, 2021 as DOI: 10.1124/jpet.121.000786

 at A
SPE

T
 Journals on A

pril 9, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


Acknowledgments 

The authors are grateful to Nobuyuki Amano, Yuichiro Amano, Ryo Mizojiri, and Noboru Tsuchimori 

from the Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan, 

and Noriko Uchiyama from Global Drug Safety Research Evaluation, Takeda Pharmaceutical Company 

Limited, Cambridge, USA for their guidance and valuable comments. The authors would like to 

acknowledge all Takeda ACC1 project members, especially Kazue Tsuchimori and Sayaka Nakagawa from 

the Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan.  

 

Author contributions 

Participated in research design: Tamura, Sugama, Iwasaki, Sasaki, Yasuno, Aoyama, Watanabe, Erion, and 

Yashiro. 

Conducted Experiments: Tamura, Sugama, Iwasaki, Sasaki, Yasuno, Aoyama, and Yashiro. 

Performed data analysis: Tamura, Sugama, Iwasaki, Sasaki, Yasuno, Aoyama, and Yashiro. 

Wrote or contributed to the writing of the manuscript: Tamura, Sugama, Iwasaki, Sasaki, Yasuno, Aoyama, 

Watanabe, Erion, and Yashiro. 

 

  

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on September 17, 2021 as DOI: 10.1124/jpet.121.000786

 at A
SPE

T
 Journals on A

pril 9, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


References 

Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, and Wakil SJ (2001) Continuous fatty acid oxidation and 

reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291: 2613-2616. 

 

Abu-Elheiga L, Oh W, Kordari P, and Wakil SJ (2003) Acetyl-CoA carboxylase 2 mutant mice are 

protected against obesity and diabetes induced by high-fat/high-carbohydrate diets. Proc Natl Acad Sci U S 

A 100: 10207-10212. 

 

Abu-Elheiga L, Matzuk MM, Kordari P, Oh W, Shaikenov T, Gu Z, and Wakil SJ (2003) Mutant mice 

lacking acetyl-CoA carboxylase 1 are embryonically lethal. Proc Natl Acad Sci U S A 102: 12011-12016. 

 

Anstee QM, Targher G, and Day CP (2013) Progression of NAFLD to diabetes mellitus, cardiovascular 

disease or cirrhosis. Nat Rev Gastroenterol Hepatol 10: 330-344. 

 

Bates J, Vijayakumar A, Ghoshal S, Marchand B, Yi S, Kornyeyev D, Zagorska A, Hollenback D, Walker 

K, Liu K, Pendem S, Newstrom D, Brockett R, Mikaelian I, Kusam S, Ramirez R, Lopez D, Li L, Fuchs 

BC, and Brechenridge DG (2020) Acetyl-CoA carboxylase inhibition disrupts metabolic reprogramming 

during hepatic stellate cell activation. J Hepatol 73: 896-905. 

 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on September 17, 2021 as DOI: 10.1124/jpet.121.000786

 at A
SPE

T
 Journals on A

pril 9, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


Bergman A, Carvajal-Gonzalez S, Tarabar S, Saxena AR, Esler WP, and Amin NB (2020) Safety, 

tolerability, pharmacokinetics, and pharmacodynamics of a liver-targeting acetyl-CoA carboxylase 

inhibitor (PF‐05221304): A three-part randomized phase 1 study. Clin Pharmacol Drug Dev 9: 514-526. 

 

Brownsey RW, Zhande R, and Boone AN (1997) Isoforms of acetyl-CoA carboxylase: structures, 

regulatory properties and metabolic functions. Biochem Soc Trans 25: 1232-1238. 

 

Bertot LC and Adams LA (2016) The natural course of non-alcoholic fatty liver disease. Int J Mol Sci 17: 

774. 

 

Chen L, Duan Y, Wei H, Ning H, Bi C, Zhao Y, Qin Y, and Li Y (2019) Acetyl-CoA carboxylase (ACC) as 

a therapeutic target for metabolic syndrome and recent developments in ACC1/2 inhibitors. Expert Opin 

Investig Drugs 28: 917-930. 

 

Choi CS, Savage DB, Abu-Elheiga L, Liu Z, Kim S, Kulkarni A, Distefano A, Hwang YJ, Reznick RM, 

Codella R, and Zhang D (2007) Continuous fat oxidation in acetyl–CoA carboxylase 2 knockout mice 

increases total energy expenditure, reduces fat mass, and improves insulin sensitivity. Proc Natl Acad Sci 

U S A 104: 16480-16485. 

 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on September 17, 2021 as DOI: 10.1124/jpet.121.000786

 at A
SPE

T
 Journals on A

pril 9, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


Cohen JC, Horton JD, and Hobbs HH (2011) Human fatty liver disease: old questions and new insights 

Science 332: 1519-1523. 

 

Cusi K, Orsak B, Bril F, Lomonaco R, Hecht J, Ortiz-Lopez C, Tio F, Hardies J, Darland C, Musi N, Webb 

A, and Portillo-Sanchez P (2016) Long-term pioglitazone treatment for patients with nonalcoholic 

steatohepatitis and prediabetes or type 2 diabetes mellitus. Ann Intern Med 165: 305-315.  

 

Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, and Parks EJ (2005) Sources of fatty 

acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin 

Invest 115: 1343-1351. 

 

Esler WP and Bence KK (2019) Metabolic targets in nonalcoholic fatty liver disease. Cell Mol 

Gastroenterol Hepatol 8: 247-267. 

 

Fabbrini E, Mohammed BS, Magkos F, Korenblat KM, Patterson BW, and Klein S (2008) Alterations in 

adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. 

Gastroenterology 134: 424-431. 

 

Friedman SL, Neuschwander-Tetri BA, Rinella M, and Sanyal AJ (2018) Mechanisms of NAFLD 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on September 17, 2021 as DOI: 10.1124/jpet.121.000786

 at A
SPE

T
 Journals on A

pril 9, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


development and therapeutic strategies. Nat Med 24: 908-922 

 

Glass LM, Dickson RC, Anderson JC, Suriawinata AA, Putra J, Berk BS, and Toor A (2015) Total body 

weight loss of ≥ 10 % is associated with improved hepatic fibrosis in patients with nonalcoholic 

steatohepatitis. Dig Dis Sci 60: 1024-1030. 

 

Glien M, Haschke G, Schroeter K, Pfenninger A, Zoller G, Keil S, Müller M, Herling AW, and Schmoll D 

(2011) Stimulation of fat oxidation, but no sustained reduction of hepatic lipids by prolonged 

pharmacological inhibition of acetyl CoA carboxylase. Horm Metab Res 43: 601-606. 

 

Goedeke L, Bates J, Vatner DF, Perry RJ, Wang T, Ramirez R, Li L, Ellis MW, Zhang D, Wong KE, 

Beysen C, Cline GW, Ray AS, and Shulman GI (2018) Acetyl-CoA carboxylase inhibition reverses 

NAFLD and hepatic insulin resistance but promotes hypertriglyceridemia in rodents. Hepatology 68: 

2197-2211. 

 

Harada N, Oda Z, Hara Y, Fujinami K, Okawa M, Ohbuchi K, Yonemoto M, Ikeda Y, Ohwaki K, Aragane 

K, Tamai Y, and Kusunoki J (2007) Hepatic de novo lipogenesis is present in liver-specific ACC1-deficient 

mice. Mol Cell Biol 27: 1881-1888. 

 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on September 17, 2021 as DOI: 10.1124/jpet.121.000786

 at A
SPE

T
 Journals on A

pril 9, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


Harriman G, Greenwood J, Bhat S, Huang X, Wang R, Paul D, Tong L, Saha AK, Westlin WF, Kapeller R, 

and Harwood HJ Jr (2006) Acetyl-CoA carboxylase inhibition by ND-630 reduces hepatic steatosis, 

improves insulin sensitivity, and modulates dyslipidemia in rats. Proc Natl Acad Sci U S A 113: 

E1796-1805.  

 

Harwood HJ Jr, Petras SF, Shelly LD, Zaccaro LM, Perry DA, Makowski MR, Hargrove DM, and 

Martin KA (2003) Isozyme-nonselective N-substituted bipiperidylcarboxamide acetyl-CoA carboxylase 

inhibitors reduce tissue malonyl-CoA concentrations, inhibit fatty acid synthesis, and increase fatty acid 

oxidation in cultured cells and in experimental animals. J Biol Chem 278: 37099-37111. 

 

Itoh M, Suganami T, Nakagawa N, Tanaka M, Yamamoto Y, Kamei Y, Terai S, Sakaida I, and Ogawa Y 

(2011) Melanocortin 4 receptor-deficient mice as a novel mouse model of nonalcoholic steatohepatitis. Am 

J Pathol 179: 2454-2463. 

 

Kamata M, Yamashita T, Kina A, Tawada M, Endo S, Mizukami A, Sasaki M, Tani A, Nakano Y, Watanabe 

Y, Furuyama N, Funami M, Amano N, and Fukatsu K (2012) Symmetrical approach of 

spiro-pyrazolidinediones as acetyl-CoA carboxylase inhibitors. Bioorg Med Chem Lett 22: 4769-4772. 

 

Kim CW, Addy C, Kusunoki J, Anderson NN, Deja S, Fu X, Burgess SC, Li C, Ruddy M, Chakravarthy M, 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on September 17, 2021 as DOI: 10.1124/jpet.121.000786

 at A
SPE

T
 Journals on A

pril 9, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


Previs S, Milstein S, Fitzgerald K, Kelley DE, and Horton JD (2017) Acetyl CoA carboxylase inhibition 

reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench 

investigation. Cell Metab 26: 394-406.e6 

 

Kohjima M, Enjoji M, Higuchi N, Kato M, Kotoh K, Yoshimoto T, Fujino T, Yada M, Yada R, Harada N, 

Takayanagi R, and Nakamuta M (2007) Re-evaluation of fatty acid metabolism-related gene expression in 

nonalcoholic fatty liver disease. Int J Mol Med 20: 351-358. 

 

Konuma K, Itoh M, Suganami T, Kanai S, Nakagawa N, Sakai T, Kawano H, Hara M, Kojima S, Izumi Y, 

and Ogawa Y (2015) Eicosapentaenoic acid ameliorates non-alcoholic steatohepatitis in a novel mouse 

model using melanocortin 4 receptor-deficient mice. PLoS One 10: e0121528. 

 

Lambert JE, Ramos-Roman MA, Browning JD, and Parks EJ (2014) Increased de novo lipogenesis is a 

distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146: 726-35. 

 

Mao J, DeMayo FJ, Li H, Abu-Elheiga L, Gu Z, Shaikenov TE, Kordari P, Chirala SS, Heird WC, and 

Wakil SJ (2006) Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride 

accumulation without affecting glucose homeostasis. Proc Natl Acad Sci U S A 103: 8552-8557. 

 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on September 17, 2021 as DOI: 10.1124/jpet.121.000786

 at A
SPE

T
 Journals on A

pril 9, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


Matsumoto M, Yashiro H, Ogino H, Aoyama K, Nambu T, Nakamura S, Nishida M, Wang X, Erion DM, 

and Kaneko M (2020) Acetyl-CoA carboxylase 1 and 2 inhibition ameliorates steatosis and hepatic fibrosis 

in a MC4R knockout murine model of nonalcoholic steatohepatitis. PLoS One 15: e0228212. 

 

Mizojiri R, Asano M, Tomita D, Banno H, Nii N, Sasaki M, Sumi H, Satoh Y, Yamamoto Y, Moriya T, 

Satomi Y, and Maezaki H (2018) Discovery of novel selective acetyl-CoA carboxylase (ACC) 1 inhibitors. 

J Med Chem 61: 1098-1117. 

 

Mummadi RR, Kasturi KS, Chennareddygari S, and Sood GK (2008) Effect of bariatric surgery on 

nonalcoholic fatty liver disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol 6: 

1396-1402. 

 

Savage DB, Choi CS, Samuel VT, Liu Z, Zhang D, Wang A, Zhang XM, Cline GW, Yu XX, Geisler JG, 

Bhanot S, Monia BP, and Shulman GI (2006) Reversal of diet-induced hepatic steatosis and hepatic insulin 

resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J Clin Invest 116: 

817-824. 

 

Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM, Neuschwander-Tetri BA, 

Lavine JE, Tonascia J, Unalp A, Van Natta M, Clark J, Brunt EM, Kleiner DE, Hoofnagle JH, and Robuck 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on September 17, 2021 as DOI: 10.1124/jpet.121.000786

 at A
SPE

T
 Journals on A

pril 9, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


PR; NASH CRN (2010) Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 

362: 1675-1685. 

 

Shiba K, Tsuchiya K, Komiya C, Miyachi Y, Mori K, Shimazu N, Yamaguchi S, Ogasawara N, Katoh M, 

Itoh M, Suganami T, and Ogawa Y (2018) Canagliflozin, an SGLT2 inhibitor, attenuates the development 

of hepatocellular carcinoma in a mouse model of human NASH. Sci Rep 8: 2362. 

 

Siddiqui MS, Harrison SA, Abdelmalek MF, Anstee QM, Bedossa P, Castera L, Dimick Santos L, 

Friedman SL, Greene K, Kleiner DE, Megnien S, Neuschwander Tetri BA, Ratziu V, Schabel E, Miller V, 

and Sanyal AJ on behalf of the Liver Forum Case Definitions Working Group (2018) Case definitions for 

inclusion and analysis of endpoints in clinical trials for nonalcoholic steatohepatitis through the lens of 

regulatory science. Hepatology 67: 2001-2012. 

 

Vernon G, Baranova A, and Younossi ZM (2011) Systematic review: the epidemiology and natural history 

of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther 34: 

274-285. 

 

Williams CD, Stengel J, Asike MI, Torres DM, Shaw J, Contreras M, Landt CL, and Harrison SA (2011) 

Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on September 17, 2021 as DOI: 10.1124/jpet.121.000786

 at A
SPE

T
 Journals on A

pril 9, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 140: 

124-131. 

 

Younossi Z, Tacke F, Arrese M, Sharma BC, Mostafa I, Bugianesi E, Wai-Sun Wong V, Yilmaz Y, George J, 

Fan J, and Vos MB (2019) Global perspectives on nonalcoholic fatty liver disease and nonalcoholic 

steatohepatitis. Hepatology 69: 2672-2682. 

 

Zechini B, Pasquazzi C, and Aceti A (2004) Correlation of serum aminotransferases with HCV RNA levels 

and histological findings in patients with chronic hepatitis C: the role of serum aspartate transaminase in 

the evaluation of disease progression. Eur J Gastroenterol Hepatol 16: 891-896. 

  

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on September 17, 2021 as DOI: 10.1124/jpet.121.000786

 at A
SPE

T
 Journals on A

pril 9, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


Footnotes 

This work was supported by Takeda Pharmaceuticals. Among the authors, YOT, SI, MS, HY, and HY are 

employees of Takeda Pharmaceuticals Inc. and stockholders of Takeda. JS, KA, MW, and DME were 

employees of Takeda Pharmaceuticals Inc. and stockholders of Takeda at the time of their contribution to 

the study reported. 

Reprint requests should be addressed to Hiroaki Yashiro at the Gastroenterology Drug Discovery Unit, 

Takeda Pharmaceuticals International Co. 350 Massachusetts Avenue, Cambridge, MA 02139, USA. 

E-mail: hiroaki.yashiro@takeda.com 

 

  

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on September 17, 2021 as DOI: 10.1124/jpet.121.000786

 at A
SPE

T
 Journals on A

pril 9, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


Figure Legends 

Figure 1. Effect of compound-1 on M-CoA content and fatty acid synthesis in HepG2 cells (A) Effect 

of compound-1 on M-CoA content in HepG2 cells. (B) Effect of compound-1 on [
14

C] acetate 

incorporation into fatty acids in HepG2 cells. Data are presented as the mean ± SD (n = 3).  

Figure 2. Effects of single oral dose of compound-1 in C57BL/6J mice. (A) Effect of compound-1 and 

compound-2 on hepatic malonyl-CoA in normal diet-fed C57BL/6J mice 2 h after a single oral dose. Data 

are presented as the mean ± SD (n = 5).
 $$$

 p < 0.001 vs. vehicle by Aspin–Welch test; ** p < 0.01, *** p < 

0.001 vs. vehicle by Dunnett’s test. (B) Effect of compound-1 (10 mg/kg) on [
14

C] acetate incorporation 

into fatty acids in WD-fed C57BL/6J mice 2 and 5 h after dosing. Data are presented as the mean ± SD (n 

= 3). 
###

 p < 0.001 vs. vehicle by Student’s t-test; 
$
 p < 0.05 vs. vehicle by Aspin–Welch test. 

Figure 3. Effect of chronic compound-1 on liver weight, triglyceride (TG) content, body weight (BW), 

and food intake (FI) in WD-fed MC4R KO mice. (A) Liver weight, (B) hepatic TG (mg/tissue), (C) BW 

change at day 56, and (D) cumulative FI at 56 days. Data are presented as the mean ± SD (n = 5–8).
 ##

 p < 

0.01 vs. WT by Student’s t-test; 
$$$

 p < 0.001 vs. WT by Aspin–Welch test; *** p < 0.001 vs. vehicle by 

Dunnett’s test; 
⁋⁋

 p < 0.01 vs. vehicle by Steel’s test.  

Figure 4. Effect of chronic compound-1 on hepatic mRNA expression in WD-fed MC4R KO mice. 

Gene expression of (A) MCP-1, (B) F4/80, (C) Col1�1, (D) Col1�2, (E) �SMA, and (F) TGF-�1. Data are 

presented as the mean ± SD (n = 5–8).
 #

 p < 0.05, 
###

 p < 0.001 vs. WT by Student’s t-test; 
$$$

 p < 0.001 vs. 

WT by Aspin–Welch test; * p < 0.05 vs. vehicle by Dunnett’s test;
 ⁋ p < 0.05, 

⁋⁋
 p < 0.01 vs. vehicle by 
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Steel’s test.  

Figure 5. Effect of chronic compound-1 on total hepatic M-CoA content in WD-fed MC4R KO mice. 

Data are presented as the mean ± SD (n = 5–8). *** p < 0.001 vs. vehicle by Dunnett’s test. 

Figure 6. Effect of chronic compound-1 on liver fibrosis in WD-fed MC4R KO mice. (A) Total hepatic 

collagen content, (B) Sirius red-positive area, (C) Representative images of liver sections stained with 

Sirius red (magnification 10×, scale bar = 100 μm), (D) Correlation between hepatic M-CoA and hepatic 

TG, and (E) Correlation between hepatic M-CoA and hepatic collagen. Data are presented as the mean ± 

SD (n = 5–8).
 ###

 p < 0.001 vs. WT by Student’s t-test;
 $$$

 p < 0.001 vs. WT by Aspin–Welch test; * p < 

0.05, ** p < 0.01, *** p < 0.001 vs. vehicle by Dunnett’s test. 
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Tables 

Table 1. Inhibitory activity of compound-1 and compound-2 on recombinant mouse ACC1 and 

ACC2 proteins 

mACC1 IC50 (nM) mACC2 IC50 (nM) 

Compound-1 1.9 > 10,000 

Compound-2 6.0 6.4 
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Table 2. Effect of chronic compound-1 on plasma parameters in WD-fed MC4R KO mice 

Mice WT WD-fed MC4R KO 

Treatment 

Vehicle 

(n=5) 

Vehicle 

(n=8) 

Compound-1 

3 mg/kg 

(n=8) 

10 mg/kg 

(n=8) 

30 mg/kg 

(n=8) 

AST 

(IU/L) 

Pre 41.8 ± 7.0 636.9 ± 96.4 $$$ 601.7 ± 108.6 613.2 ± 101.7 620.7 ± 92.3 

Post 64.3 ± 12.8 649.6 ± 86.7 526.4 ± 84.6 ⁋ 268.9 ± 61.7 ⁋⁋ 105.3 ± 8.0 ⁋⁋ 

ALT 

(IU/L) 

Pre 22.1 ± 4.6 857.6 ± 103.9 $$$ 849.5 ± 133.2 860.2 ± 118.8 858.9 ± 113.1 

Post 20.4 ± 14.1 840.7 ± 124.4 612.2 ± 94.2 ⁋ 283.9 ± 74.0 ⁋⁋ 54.6 ± 9.1 ⁋⁋ 

TG 

(mg/dL) 

Pre 132.0 ± 16.0 85.1 ± 15.9 ### 88.2 ± 22.7 75.5 ± 15.1 81.7 ± 25.8 

Post 117.5 ± 39.6 75.2 ± 9.3 132.0 ± 36.2 ⁋⁋ 146.0 ± 31.9 ⁋⁋ 159.3 ± 73.8 ⁋⁋ 

T-Cho 

(mg/dL) 

Pre 95.5 ± 6.2 405.5 ± 22.4 $$$ 393.1 ± 38.3 387.2 ± 26.6 403.0 ± 31.3 

Post 97.0 ± 5.0 429.2 ± 18.6 390.4 ± 37.7 * 305.3 ± 37.2 *** 164.8 ± 25.4 *** 

a
Plasma parameters were measured before (Pre) and after (Post) 8 weeks of treatment. 

b
Data are presented as the mean ± SD (n = 5–8). 

###
 p < 0.001 vs. WT by Student’s t-test, 

$$$
 p < 0.001 vs. WT by Aspin–Welch test. 

* p < 0.05, *** p < 0.001 vs. vehicle by Dunnett’s test. 

⁋
 p < 0.05, 

⁋⁋
 p < 0.01 vs. vehicle by Steel’s test.  
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Supplementary Materials and Methods 

Measurement of pharmacokinetics in mice 

Plasma concentrations of compound-1 were measured using the LC/MS/MS method. Plasma was 

precipitated using acetonitrile containing the internal standard, diclofenac. The precipitated sample was 

centrifuged for 5 min at approximately 3000 × g. The supernatants were diluted with the mobile phase and 

injected into the LC/MS/MS system. This system comprised a 20AD-VP system (Shimadzu, Kyoto, Japan) 

and a triple quadrupole mass spectrometry detection API-5000 (AB Sciex, Framingham, MA, USA), 

equipped with a turbo ion spray ionization source in the positive ionization mode. Chromatographic 

separation was achieved using a reversed phase (C18) column [Shim-pack XR-ODS (2.2 μm, 2.0 × 30 mm); 

Shimadzu, Kyoto, Japan] at 50 °C. The mobile phase consisted of 0.2% (v/v) formic acid in 0.01 M 

ammonium formate (pH 3.0; solvent A) and 0.2% (v/v) formic acid in acetonitrile (solvent B), which was 

delivered at a flow rate of 0.7 mL/min. The analyte was eluted using a linear gradient of 95% solvent A/5% 

solvent B to 5% solvent A/95% solvent B. Detection was performed using multiple reaction monitoring in 

the positive ionization mode (SRM m/z = 424.2 → 101.1 for T-3773082 and m/z = 296.1 → 214.2 for 

diclofenac). Analyst softwareTM (version 1.6.2; AB Sciex) was used for data acquisition and processing. The 

concentration of compounds in each sample was back calculated using a calibration curve generated from a 

set of calibration standards. 

  



Supplementary data 

 

Supplementary Table S1. Plasma compound-1 concentration in normal-fed C57BL/6J mice 2 h after 

oral administration 

Dose (mg/kg) 
Plasma concentration (μg/mL) 

Mean SD 

0.3 0.686 0.119 

1 2.243 0.367 

3 6.045 0.981 

10 18.762 2.957 

30 51.018 3.438 

100 115.174 3.555 

Data are presented as the mean ± SD (n = 5) 

  



Supplementary Table S2. Plasma concentration and pharmacokinetic parameters of compound-1 in 

the plasma of WD-fed MC4R KO mice after 8 weeks of repeated oral administration 

 

 

 

 

 

 

 

 

 

 

 

 

Data are presented as the mean ± SD (n = 3). 

(B) 
Dose 3 mg/kg 10 mg/kg 30 mg/kg 

Cmax (μg/mL) 8.427 25.918 66.524

Tmax (h) 1.00 2.00 2.00

AUC0–6 h (μg･h/mL) 42.160 134.320 345.404

MRT (h) 2.78 2.91 3.19

(A) 

Time 

(h) 

Plasma concentration (μg/mL) 

3 mg/kg 10 mg/kg 30 mg/kg 

Mean SD Mean SD Mean SD 

0 2.138 0.023 5.891 0.832 16.519 2.840

0.5 6.699 1.349 21.532 2.040 41.969 7.436

1 8.427 1.336 23.485 0.497 44.202 16.166

2 8.239 0.384 25.918 7.103 66.524 9.868

6 5.679 0.196 19.836 0.840 60.414 2.923

 



 

Supplementary Figure S1. Effect of chronic compound-1 on hepatic mRNA expression in WD-fed 

MC4R KO mice. Gene expression of (A) ACC1, (B) ACC2, (C) Fasn, and (D) Scd1. Data are presented as 

the mean ± SD (n = 5–8). ### p < 0.001 vs. WT by Student’s t-test; $$$ p < 0.001 vs. WT by Aspin–Welch test; 

⁋ p < 0.05, ⁋⁋ p < 0.01 vs. vehicle by Steel’s test. 


