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Abstract

Acetyl-CoA carboxylase (ACC) 1 and ACC2 are essential rate-limiting enzymes that synthesize
malonyl-CoA (M-CoA) from acetyl-CoA. ACCI1 is predominantly expressed in lipogenic tissues and
regulates the de novo lipogenesis flux. It is upregulated in the liver of patients with nonalcoholic fatty liver
disease (NAFLD), ultimately leading to the formation of fatty liver. Therefore, selective ACCI1 inhibitors
may prevent the pathophysiology of NAFLD and nonalcoholic steatohepatitis (NASH) by reducing hepatic
fat, inflammation, and fibrosis. Many studies have suggested ACCI1/2 dual inhibitors for treating
NAFLD/NASH; however, reports on selective ACC1 inhibitors are lacking. In this study, we investigated
the effects of compound-1, a selective ACC1 inhibitor for treating NAFLD/NASH, using pre-clinical in
vitro and in vivo models. Compound-1 reduced M-CoA content and inhibited the incorporation of [14C]
acetate into fatty acids in HepG2 cells. Additionally, it reduced hepatic M-CoA content and inhibited DNL
in C57BL/6J mice after a single dose. Further, compound-1 treatment for 8§ weeks in western diet-fed
melanocortin 4 receptor knockout mice—NAFLD/NASH mouse model—improved liver hypertrophy and
reduced hepatic triglyceride content. The reduction of hepatic M-CoA by the selective ACC1 inhibitor was
highly correlated with the reduction in hepatic steatosis and fibrosis. These findings support further

investigations of the use of this ACCI inhibitor as a new treatment for NFLD/NASH.

Significance statement:

This is the first study to demonstrate that a novel selective inhibitor of acetyl-CoA carboxylase 1 (ACC1)
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has anti-nonalcoholic fatty liver disease (NAFLD) and anti-nonalcoholic steatohepatitis (NASH) effects in

pre-clinical models. Treatment with this compound significantly improved hepatic steatosis and fibrosis in

a mouse model. These findings support the use of this ACCI inhibitor as a new treatment for

NAFLD/NASH.
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Introduction

Nonalcoholic fatty liver disease (NAFLD) is a liver disease characterized by excessive fat

accumulation in hepatocytes that is not caused by alcohol consumption (Friedman et al., 2018; Vernon et

al., 2011). Nonalcoholic steatohepatitis (NASH) is a sub-category of NAFLD and is defined on the basis of

the following liver biopsy histological features: lobular inflammation, hepatocellular ballooning, fibrosis,

and steatosis (Williams et al., 2011; Siddiqui et al., 2018). Since NAFLD and NASH are associated with

cirrhosis and hepatocellular carcinoma (Anstee, 2013), they also represent important factors that contribute

to the recent increase in liver-related morbidity and mortality.

The global prevalence of NAFLD has continued to increase annually with 25% of the world

population affected in 2018 (Younossi et al., 2019). Although up to 30% of the patients with NAFLD

develop NASH (Calzadilla Bertot and Adams, 2016), no anti-NAFLD/NASH drugs have been approved

(Sanyal et al., 2010; Cusi et al., 2016; Esler and Bence, 2019), thus resulting in an unmet medical need.

Hepatic steatosis is caused by an imbalance in hepatic lipid metabolism favoring the storage of lipids

within the liver (Cohen et al., 2011), which triggers hepatic inflammation and, subsequently, fibrosis,

which drives NASH progression. Furthermore, metabolic syndromes, such as obesity, insulin resistance,

and dyslipidemia, represent the major risk factors for the development of NAFLD/NASH. Therefore,

multiple clinical trials are focusing on correcting the dysfunctional lipid metabolism via the application of

lipid metabolism pathway modulators, nuclear hormone receptor agonists, and glycemic modulators (Esler

and Bence, 2019).
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Acetyl-CoA carboxylase (ACC) is an essential rate-limiting enzyme in fatty acid metabolism that

catalyzes the carboxylation of acetyl-CoA to form malonyl-CoA (M-CoA) (Brownsey et al., 1997).

Mammals have two ACC isoforms. ACCI is localized in the cytosol and predominantly expressed in

lipogenic tissues, such as the liver and adipose tissue; whereas ACC2 is localized in the mitochondrial

surface and is predominantly expressed in oxidative tissues, including skeletal muscle and heart, and to

some extent, in the liver and adipose tissues (Abu-Elheiga et al., 2001). M-CoA produced by ACCI is an

intermediate in de novo lipogenesis (DNL) and acts as a substrate for fatty acid synthase (FAS) in acyl

chain elongation (Mao et al., 2006). Furthermore, M-CoA produced by ACC2 inhibits carnitine

palmitoyltransferase 1, which participates in regulating fatty acid B-oxidation (Abu-Elheiga et al., 2001,

2003). Indeed, several studies have shown that liver-specific ACC1 knockout (KO) mice have reduced

hepatic DNL, M-CoA, and triglyceride (TG) accumulation (Mao et al., 2006; Harada et al., 2007), whereas

ACC2 KO mice exhibit increased fatty acid oxidation coupled with elevated whole-body energy

expenditure and improved whole-body adiposity compared to wild-type mice (Choi et al., 2007;

Abu-Elheiga et al., 2001).

Recently, several ACC1/2 dual inhibitors have been investigated for treating NAFLD/NASH in

pre-clinical and clinical studies (Chen et al., 2019; Esler et al., 2019), many of which have reported that

these dual inhibitors induce undesirable effects, including plasma TG elevation, which may be caused by

excessive suppression of ACC activity. However, the anti-NAFLD/NASH effect of selective ACCI

inhibitors has not been evaluated in pre-clinical or clinical studies to understand whether the therapeutic
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window for ACC1 inhibitors would be greater than that for ACC1/2 inhibitors.

To support the efficacy of an ACCI inhibitor, selective ACCI1 suppression using antisense

oligonucleotides demonstrated both reduced triglyceride synthesis and increased fat oxidation in primary

rat hepatocytes (Savage et al., 2006). Furthermore, hepatic DNL is markedly higher in patients with

NAFLD than in healthy subjects (Donnelly et al., 2005; Fabbrini et al., 2008; Lambert et al., 2014). Lastly,

ACCI1, not ACC2, expression has been reported as upregulated in the liver of NAFLD patients (Kohjima et

al., 2007). These data suggest that ACC1 inhibition alone could have the potential to improve hepatic

steatosis and fibrosis.

Recently, Mizojiri et al. (2018) generated a systemic selective human ACC1 inhibitor, compound-1

(selectivity more than 17,000-fold over that for human ACC2). To investigate the anti-NAFLD/NASH

effect of ACC1 inhibition, we evaluated the effect of compound-1 on M-CoA production and hepatic DNL

in vitro and in vivo. Additionally, we investigated the effects of compound-1 on hepatic steatosis and

fibrosis by using western diet (WD)-fed melanocortin 4 receptor (MC4R) KO mice, a genetic and

obesogenic dietary model that mimics the human pathophysiology of NAFLD/NASH with obesity, insulin

resistance, and excessive lipid accumulation, as well as enhanced liver fibrosis (Itoh et al., 2011; Konuma

et al., 2015; Shiba et al., 2018). Taken together, these data are supportive of the critical role of ACC1 in the

pathophysiology of liver diseases.
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Materials and Methods

Compoundls

Compounds used in the study were synthesized by Takeda Pharmaceutical Company Limited

Kanagawa, Japan). In the animal studies, compounds were suspended in 0.5% methylcellulose (MC).
g p p p y

Mouse and human ACC enzyme assays

Compounds were dissolved in dimethyl sulfoxide (DMSO) and then diluted with an enzyme reaction
buffer [SO mM HEPES (pH 7.5), 10 mM MgCl,, 10 mM tripotassium citrate, 2 mM dithiothreitol, and
0.001% fatty acid-free bovine serum albumin]. Recombinant mouse ACC1 or ACC2 produced by Sf-9
cells was diluted with the enzyme reaction buffer to 0.8 pg/mL and 0.1 pg/mL, respectively. A 5
pL-aliquot of the compound solution was added to each well of a 384-well assay plate, and 10 pL of the
enzyme mixture was added to each well. The mixture was incubated at room temperature for 60 min. Next,
a substrate solution (50 mM KHCOs;, 200 uM ATP, and 5 pL of 200 uM acetyl-CoA) was added to each
well, and the mixture was reacted at room temperature for 15 min. The reaction was stopped by adding 40
pL of stop solution (1.3% formic acid, 0.2 pM malonyl-">C3-CoA; 655759; Fujifilm Wako Pure Chemical
Industries, Osaka, Japan) to each of the obtained reaction mixtures. The production of M-CoA was
detected using RapidFire mass spectrometry (API4000; Sciex, Tokyo, Japan) and corrected with
malonyl-13C3—CoA. The ICs values were calculated using XLfit from the data expressed as inhibition (%)

by using fit Model 204 (4 Parameter Logistic Model). The ICs, values of the inhibitors were converted to
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pICsp [log (1/ICsp)] and used as the dependent variable for correlation analysis. The response of vehicle

control was considered as 0% inhibition, and that without enzyme was considered as 100% inhibition. The

human ACC enzyme assay was performed following the protocol reported in a previous study (Mizojiri et

al., 2018).

Cell culture

The human hepatoma-derived cell line, HepG2, was purchased from the American Type Culture
Collection (HB-8065; Manassas, VA, USA). The cells were incubated in Dulbecco’s modified Eagle
medium (DMEM) (10567014; Thermo Fisher Scientific, Tokyo, Japan) containing 10% fetal bovine serum
(SH30084.03; Hyclone Laboratories Inc., Logan, UT, USA), penicillin, and streptomycin under 5% CO, at

37 °C.

Measurement of M-CoA content in HepG?2 cells

HepG2 cells were plated in a 12-well plate at 2.4 X 10° cells/well and incubated for 48 h under 5%
CO, at 37 °C. After the medium was removed, cells were incubated with DMSO or compound-1 in the
assay medium (DMEM containing 0.09% fatty acid-free bovine serum; 017-22231; Fujifilm Wako Pure
Chemical Industries, Osaka, Japan) for 2 h. Next, the cells were washed with 500 pL of ice-cold
phosphate-buffered saline (PBS), and 1200 pL of ice-cold 6% hydrogen peroxide was added to lyse the

cells. After the cell lysates were collected in tubes, samples were immediately stored at -80 °C until

11
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analysis. Refer to the experimental section on M-CoA for the measurements.

Measurement of DNL in HepG?2 cells

HepG2 cells were plated in a 24-well plate at 1.5 x 10° cells/well and incubated for 24 h under 5%
CO, at 37 °C. The cells were washed twice with 500 puL of PBS and incubated with DMSO or
compound-1 in assay medium (DMEM containing 0.09% fatty acid-free bovine serum) for 1 h.
Subsequently, 5 puL of "C-acetate (25 mM, 10 pCi/umol) was added and incubated for 2 h at 37 °C. After
the cells were washed twice with 500 pL of PBS, 500 uL of 0.5 N NaOH was added to lyse the cells. Next,
200 pL of 50% KOH and 1000 uL of EtOH were added to the cell lysate and incubated for 1 h at 70 °C
for saponification. Next, 1000 uL of H,O was added, followed by the addition of 4000 pL of petroleum
ether. After the organic layers were collected, HCI was added to the aqueous layer to adjust the pH to
below 4. Subsequently, 4000 pL of petroleum ether was added, and the organic layers were collected. The
pooled organic layers were dried using N, gas and resuspended in a scintillation A cocktail. Radioactivity

was measured using liquid scintillation counting in 3110 TR (PerkinElmer Inc., Waltham, MA, USA).

Animals
Animal experiments were approved by the Institutional Animal Care and Use Committee of Shonan
Research Center, Takeda Pharmaceutical Company Limited (Kanagawa, Japan), and conformed to the

guidelines of the US National Institutes of Health—Guide for the Care and Use of Laboratory Animals.

12
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Male C57BL/6J mice were purchased from Charles River Laboratories, Japan (Yokohama, Japan) and

fed normal chow (CE-2; CLEA Japan, Inc., Tokyo, Japan). Male Mc4r null (MC4R KO) mice were

generated following a previous study (Matsumoto et al., 2020). MC4R KO mice and wild-type littermate

mice were fed CE-2. All animals were housed in a group under controlled conditions including a 12 h/12 h

light/dark cycle at 20-26 °C and humidity of 40-70%; they were allowed free access to food and tap

water.

Evaluation of the effect of a single dose of compound-1 on hepatic M-CoA in CE-2-fed C57BL/6J mice

(dose-response study)

For this, 7-week-old CE-2-fed C57BL/6J mice were divided into eight groups of five mice each based

on body weight (BW) and BW change during habituation. Mice were orally administered (10 mL/kg

volume) with vehicle (0.5% MC), compound-1, or compound-2, and sacrificed after 2 h of treatment under

isoflurane anesthesia. Blood samples were collected from the abdominal vena cava and centrifuged at

13,000 x g for 5min at 4 °C to collect plasma, which was stored at =80 °C for pharmacokinetic analysis.

After the liver weight was measured, liver samples were immediately frozen in liquid nitrogen and stored

at —80 °C for M-CoA measurement and pharmacokinetic (PK) analysis. Refer to the M-CoA and PK

experimental section for the measurements.

Evaluation of the effect of a single dose of compound-1 on hepatic DNL in WD-fed C57BL/6J mice

13
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For this, 7-week-old mice were divided into four groups of three mice each based on BW after they
were fed WD (D12079B; Research Diets, Inc., New Brunswick, NJ, USA) for 3 days. Mice were orally
administered (10 mL/kg volume) vehicle (0.5% MC) or compound-1 (10 mg/kg) and intraperitoneally
administered '*C-acetate (400 nCi/5 mL/kg) after 1 h of treatment. Mice were sacrificed after 2 or 5 h of
drug treatment under isoflurane anesthesia. The radioactivity of the fatty acid fraction in the liver was

measured according to a previous study (Harwood et al., 2003).

Repeated dose study of compound-1 in WD-fed MC4R KO mice

For this, 9-week-old MC4R KO mice were fed WD, and wild-type (WT) mice were fed CE-2. At the
age of 23 weeks, WD-fed MC4R KO mice were divided into four groups of eight mice each based on BW,
food intake (FI), plasma glucose (PG), triglyceride (TG), total cholesterol (TC), aspartate aminotransferase
(AST), alanine aminotransferase (ALT), and insulin at day —3. Mice were orally administered (5 mL/kg
volume) vehicle (0.5% MC) or compound-1 (3, 10, and 30 mg/kg) once daily for 8 weeks.

BW and FI were monitored every 3—4 days. On days 17, 31, and 56, blood samples were collected
from the tail vein for the measurement of plasma parameters. PG, TG, TC, AST, and ALT were
enzymatically measured using an Autoanalyzer 7180 (Hitachi High-Technologies Corporation, Tokyo,
Japan). Plasma insulin levels were measured using sandwich enzyme-linked immunosorbent assay
(ELISA; Shibayagi, Gunma, Japan, or Morinaga Institute of Biological Science, Kanagawa, Japan).

For pharmacokinetic analysis, blood samples were collected from the tail vein at day 56. Blood

14
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samples were centrifuged at 13,000 x g for 5 min at 4 °C to collect plasma, which was stored at —80 °C

for pharmacokinetic analysis. Refer to the PK experimental section for the measurements.

Mice were sacrificed under isoflurane anesthesia on day O (pre) and day 60. Blood samples were

collected from the abdominal vena cava and centrifuged at 13,000 x g for 5 min at 4 °C to collect plasma,

which was stored at =80 °C for the measurement of parameters. After the liver weight was measured, liver

samples were immediately frozen in liquid nitrogen and stored at —80 °C. For histopathological analysis,

liver samples were stored in 10% neutral buffered formalin.

The hepatic TG content was measured as follows. First, 900 pL of saline was added to 100 mg liver

tissue and homogenized (27 Hz, 2 min) with zirconia beads. The homogenate (200 uL) was mixed

thoroughly with 600 puL of CHCl;:MeOH (1:2) for 30 min. After 200 uL of CHCIl; and 200 pL of H,O

were added to the mixed homogenate, it was stirred for 10—30 min. After centrifugation (12,000 x g, 2 min,

room temperature), the CHCl; layers were collected, and 50 pL was dried under N, gas and resuspended in

isopropanol (80 uL for WT mice sample and 300 uL for MC4R KO mice sample). Extracted triglyceride

content was measured using the Triglyceride-E test (432-40201; Fujifilm Wako Pure Chemical Industries,

Osaka, Japan).

The hepatic collagen levels were measured using a commercially available kit (QZBTOTCOLI,;

Quickzyme Biosciences, Leiden, Netherlands) according to manufacturer’s instructions.

The percentage of hepatic Sirius red-positive area was measured as follows. Liver samples fixed with

10% neutral buffered formalin were embedded in paraffin. Liver histology was assessed in 4-pum-thick

15
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sections stained with hematoxylin-eosin (HE) and Sirius red. The Sirius red-positive areas were quantified

using four randomly selected fields per liver sample by using the WinROOF software (Mitani Co., Tokyo,

Japan). Histological analysis was conducted in a randomized and double-blinded manner.

Hepatic mRNA levels were measured as follows. Total RNA was isolated from the liver samples that

were stored in RNA later by using a Lipid Tissue Mini kit (Qiagen, Tokyo, Japan). Reverse transcription

reactions were performed using a SuperScript VILO cDNA synthesis kit (Thermo Fisher Scientific, Tokyo,

Japan), according to manufacturer’s instructions. Gene expression was quantified using TagMan real-time

PCR (ABI7900; Thermo Fisher Scientific, Tokyo, Japan) using Platinum qPCR SuperMix-UDG (Thermo

Fisher Scientific, Tokyo, Japan) and primers/Taqman probe sets (Thermo Fisher Scientific, Tokyo, Japan).

The following primer-probe sets were used: monocyte chemoattractant protein-1 (Ccl2; MCP-1,

MmO00441242 ml), Adgrel (F4/80, Mm00802529 ml), collagen typel alphal (Collal,

Mm00801666_gl), collagen typel alpha2 (Colla2; MmO00483888 ml), alpha-smooth muscle actin

(Acta2; aSMA, MmO00725412_s1), transforming growth factor-beta 1 (TeffBl; TGF-f1, Mm01178820 m1),

acetyl-coenzyme A carboxylase alpha (Acaca; ACCI, Mm01304257 ml), acetyl-coenzyme A carboxylase

beta (Acach; ACC2, Mm01204671_ml), FAS (Fasn; Mm00662319 ml), stearoyl-coenzyme A desaturase

1 (Scdl; MmO00772290 ml), and Rplp0 (36B4, Mm00725448 s1). The relative gene expression was

calculated using the AACt method and normalized to Rp/p0 expression.

Measurement of cellular or hepatic M-CoA

16

20z ‘6 |udy uoseuinor 134SV e Bio'sfeulnoliedse-ied| wouy pepeojumoq


http://jpet.aspetjournals.org/

JPET Fast Forward. Published on September 17, 2021 as DOI: 10.1124/jpet.121.000786
This article has not been copyedited and formatted. The final version may differ from this version.

Tissue samples were homogenized in 6% perchloric acid containing malony1-13C3-CoA
(Sigma-Aldrich, St. Louis, MO, USA) as an internal standard. After centrifugation, the supernatant was
subjected to solid-phase extraction by using an Oasis HLB Extraction Cartridge (Waters, Milford, MA,
USA). The analyte was eluted with acetonitrile and supplemented with dibutylammonium acetate (Tokyo
Chemical Industries, Tokyo, Japan), followed by rinsing of the column with ultrapure water. The eluate
was dried under a stream of nitrogen, and the residue was reconstituted in 100 pL of ultrapure water. An
aliquot of 10 puL was injected into the liquid chromatography-tandem mass spectrometry (LC-MS/MS)
system, which consisted of a Shimadzu LC-20AD HPLC system (Shimadzu, Kyoto, Japan) and an
API5000 or API5500 mass spectrometer (AB Sciex, Foster City, CA, USA). The analytical column was a
CAPCELL CORE C18 column (2.7 pm, 2.1 x 50 mm; Shiseido, Kanagawa, Japan) used at 40 °C. The
mobile phases consisted of (A) 50 mM ammonium carbonate/ammonium hydroxide (pH 9) supplemented
with dibutylammonium acetate and (B) acetonitrile. The analyte was eluted using a gradient of 95%
solvent A/5% solvent B to 5% solvent A/95% solvent B. The flow rate of the mobile phase was 0.3
mL/min. Detection was performed using multiple reaction monitoring in the positive ionization mode
[selected reaction monitoring m/z = 854.1 — 347.1 or 854.1 — 303.3 for M-CoA and m/z = 857.2 —
350.2 for malonyl-13C3-CoA (internal standard)]. AnalystTM software (version 1.6.2, AB Sciex) was used
for data acquisition and processing. The concentration of compounds in each sample was back-calculated

using a calibration curve generated from a series of calibration standards.
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Statistical analysis

All data in the graph are represented as means + SDs. Statistical analyses were performed in EXSUS

ver.8.0 in combination with SAS ver. 9.3 or GraphPad PRISM software. To evaluate the effects of

compound-1 in vivo, we analyzed the statistical differences between vehicle and drug treatment in

C57BL/6J mice or MC4R KO mice using Student’s #-test, Aspin—Welch test, Dunnett’s test, and Steel’s test.

To confirm the establishment of the disease state, we analyzed the statistical differences between WT mice

and vehicle by using Student’s #-test or Aspin—Welch test. For all tests, p-values of <0.05 were considered

statistically significant. The correlation between hepatic M-CoA content and hepatic TG, hepatic M-CoA

content and hepatic collagen were analyzed using Pearson’s correlation coefficient.

18
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Results

Inhibition of mouse ACC1 and ACC2

The inhibitory activities of compound-1 and compound-2 (dual ACC1/2 inhibitor) (Kamata et al.,

2012) on recombinant mouse ACCl1 and ACC2 enzymes were evaluated. Compound-1 inhibited

recombinant human ACC1 and ACC2 at ICs, values of 0.58 nM and > 10,000 nM, respectively (Mizojiri et

al., 2018), as well as mouse ACC1 and ACC2 with ICs, values of 1.9 nM and > 10,000 nM, respectively

(Table 1). Conversely, compound-2 inhibited mouse ACC1 and ACC2 with ICs, values of 6.0 nM and 6.4

nM, respectively. These results indicate that compound-1 is selective for ACC1 inhibition, whereas

compound-2 inhibits both ACC1 and ACC2.

Effect of compound-1 on M-CoA content and DNL in HepG?2 cells

To assess the effect of compound-1 on M-CoA content and DNL in cultured cells, we investigated the

effect of compound-1 on M-CoA production and ['*C] acetate incorporation into fatty acids in HepG2 cells.

Compound-1 decreased the M-CoA content in cells with ICsy of 16.0 nM (Figure 1A) and inhibited cy
acetate incorporation into fatty acids with I1Cso of 12.7 nM (Figure 1B) in a dose-dependent manner. In
addition, the unbound fraction of compound-1 in the medium was 0.09. The estimated unbound
compound-1-based ICsyp when compound-1 inhibited M-CoA production and ['*C] acetate incorporation

was 1.44 nM and 1.14 nM, respectively.
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Effect of compound-1 on hepatic M-CoA content and DNL in C57BL/6J mice

M-CoA is formed from acetyl-CoA by ACC, and the hepatic M-CoA level could be used as a
pharmacodynamic marker of ACC inhibition (Harriman et al., 2016; Glien et al., 2011). Therefore, we
assessed the ability of compound-1 to suppress hepatic M-CoA content in C57BL/6J mice, which were fed
normal chow. At 2 h after a single dose, compound-1 significantly and dose-dependently decreased hepatic
M-CoA content from the lowest tested dose of 0.3 mg/kg. The efficacy of compound-1 tended to plateau at
approximately 30 mg/kg, and a maximum reduction of —64% was noted at 100 mg/kg (Figure 2A).
Conversely, compound-2 (100 mg/kg, to achieve >85% inhibition), an ACC1/2 dual inhibitor, reduced
hepatic M-CoA by 88% compared to vehicle (Figure 2A). To analyze the correlation between compound-1
blood exposure and hepatic M-CoA reduction, we measured the plasma concentration of compound-1 at 2
h after dose. We already confirmed that the plasma and hepatic concentrations of compound-1 were similar
in a separate time-course study. Thus, the plasma concentration can be used as the index for analyzing the
pharmacokinetics and pharmacodynamics (data not shown). The ICsy of hepatic M-CoA reduction was
1.88 ng/mL (0.90 mg/kg) of plasma concentration in C57BL/6J mice (Supplementary Table 1). The
exploratory in vitro study suggested high plasma protein binding of compound-1 to mice plasma and the
estimated unbound compound-1-based ICsy was less than 5 nM. We also confirmed that compound-1 (10
mg/kg) did not change the M-CoA content in muscles where ACC2 is predominantly expressed 1 h after a
single dose (data not shown).

To assess DNL inhibition by compound-1 in vivo, we evaluated the inhibition of [14C] acetate
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incorporation into fatty acids in mice that were fed WD. Compound-1 (10 mg/kg) inhibited hepatic fatty

acid synthesis in WD-fed C57BL/6J mice by 77.6% and 67.8% at 2 and 5 h after oral administration,

respectively (Figure 2B).

Based on these pharmacodynamic results, we selected the doses of 3, 10, and 30 mg/kg for the

repeated dose study to investigate the anti-NAFLD/NASH effect of compound-1 in WD-fed MC4R KO

mice.

Compound-1 improves hepatic steatosis and fibrosis in WD-fed MC4R KO mice

To evaluate the effects of compound-1 on NAFLD/NASH, we orally administered compound-1 to

WD-fed MC4R KO mice once daily for 8 weeks at doses of 3, 10, and 30 mg/kg.

The liver weight and hepatic TG content in WD-fed MC4R KO mice were significantly higher than

those in WT mice (Figure 3A and 3B). The total liver weights in compound-1 (3, 10, and 30 mg/kg)-treated

groups were reduced by 9.1%, 23.8%, and 57.1%, respectively, compared to that in the vehicle-treated

group (Figure 3A). In addition, consistent with the improvement of the appearance of fatty liver (data not

shown), compound-1 significantly reduced the total hepatic TG at doses of 10 and 30 mg/kg (Figure 3B).

These results indicate that compound-1 improves liver hypertrophy and steatosis.

All animals in the compound-1 (30 mg/kg)-treated group showed abnormal findings, such as dryness

of the tail, loss of fur around the chest, and flushing of the face on day 56 (data not shown). No other

abnormalities were observed in terms of anatomy and appearance. Only at 30 mg/kg did compound-1
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treatment significantly decrease BW without reducing the cumulative FI (Figure 3C and 3D); however, the

BW reduction was not correlated with the severity of skin toxicity.

The plasma parameter levels were evaluated before and after the 8-week treatment of compound-1

(Table 2). At the start of drug treatment, plasma AST and ALT, which are hepatic enzymes that could be

used as markers of hepatocellular injury (Zechini et al., 2004), and TC levels were higher in WD-fed

MC4R KO mice than in WT mice. In contrast, plasma TG levels were lower in WD-fed MC4R KO mice

than in WT mice. These data suggested that WD-fed MC4R KO mice exhibited hepatocellular injury and

lipid metabolism disruption.

Compound-1 treatment markedly decreased plasma AST, ALT, and TC levels in a dose-dependent

manner, whereas the treatment increased plasma TG concentrations compared to those in the

vehicle-treated group. However, plasma TG levels in the compound-1-treated mice never reached

statistically significant increased values over those observed in the WT mice.

The plasma concentration and pharmacokinetic parameters of compound-1 before and after the final

dose are shown in Supplementary Table 2.

To evaluate the effects of compound-1 on markers of inflammation and fibrosis, we measured the

mRNA expression of MCP-1 and F4/80 as markers of inflammation and that of Collal, Coll a2, aSMA,

and TGF-pI as markers of fibrosis activity in the liver. In addition, we evaluated the expression of

lipogenesis-related genes, including ACC/ and ACC2 in the liver. Compared to WT mice, WD-fed,

vehicle-treated MC4R KO mice showed remarkable elevation in the expression levels of MCP-1, F4/80,
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Collal, Colla2, aSMA, and TGF-p1 (Figure 4), suggesting progression to NASH with macrophage
infiltration induced by MCP-1 which are hypothesized to be induced by hepatic steatosis, were observed in
this mouse model. In addition, we confirmed that the expression of ACCI, Fasn, and Scdl was increased in
this model (Supplementary Figure 1); these are consistent with the findings of previous studies (Itoh et al.,
2011; Konuma et al., 2015; Shiba et al., 2018). Compound-1 significantly decreased the gene expression
levels of MCP-1, F4/80, Collal, Coll a2, aSMA, and TGF-pI (Figure 4), whereas it increased those of
ACCI1, ACC2, Fasn, and Scdl (Supplementary Figure 1).

We measured the hepatic M-CoA content as a PD marker at 20 h after the final dose in WD-fed
MC4R KO mice. Compound-1 dose-dependently reduced hepatic M-CoA content, and the maximum
efficacy was observed in the 30 mg/kg group, which was 62% lower than that in the vehicle-treated group
(Figure 5).

In addition, we investigated the anti-fibrotic effect of compound-1 by conducting biochemical and
histological analyses in the liver. Hepatic collagen content and Sirius red-positive area were significantly
higher in WD-fed MC4R KO mice than in WT mice (Figure 6A, 6B, and 6C). Compound-1 significantly
decreased hepatic collagen (mg/liver) at doses of 10 and 30 mg/kg and Sirius red-positive area at doses of
3 and 10 mg/kg. Notably, hepatic M-CoA reduction was correlated with the decrease in hepatic TG and

collagen (Figure 6D and 6E, R = 0.5716 ****p < 0.0001 and R = 0.5472 ****p < 0.0001).
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Discussion

Hepatic DNL is markedly higher in NAFLD patients than in healthy individuals (Donnelly et al.,

2005; Fabbrini et al., 2008; Lambert et al., 2014), and ACC1—the rate-limiting enzyme for hepatic

DNL—is upregulated in NAFLD patients (Kohjima et al., 2007), suggesting that abnormal ACC1 activity

contributes to the pathogenesis of fatty liver, a key feature of NAFLD. In the current study, compound-1, a

novel selective ACC1 inhibitor, was found to influence hepatic M-CoA concentrations, which in turn

reduced hepatic lipid accumulation and prevented hepatic fibrosis in WD-fed MC4R KO mice.

First, we determined that compound-1 is highly selective, at the enzyme level, for mouse ACCI, not

ACC2, thus providing a candidate molecule for further studies on the biological function of ACC1. We

also confirmed the effect of compound-1 on the pharmacodynamic marker M-CoA in a liver cell model

indicating that ACC1 inhibition is sufficient to reduce intracellular M-CoA concentrations. The cellular

M-CoA production and subsequent fatty acid synthesis were dose-dependently suppressed by compound-1

treatment. Therefore, compound-1 inhibits M-CoA content and fatty acid synthesis in hepatocytes by

selectively blocking ACC1 and could represent a potential therapeutic strategy for improving hepatic

steatosis.

To confirm that the reduced in vitro DNL translates in vivo, we administered a selective ACC1

inhibitor to C57BL/6J mice. Hepatic M-CoA concentrations negatively correlated with the plasma

concentration of compound-1 and fatty acid synthesis, which were measured by the incorporation of

acetate into lipids, was significantly suppressed by compound-1 treatment (10 mg/kg; Figure 2 and
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Supplementary Table 1). In addition, we confirmed the ACCI1 selectivity for compound-1 in vivo by

comparing its effect on the reduction in M-CoA levels in the liver and muscles. These results support that

compound-1 inhibits DNL via ACC1 inhibition in vivo and corroborates the in vitro results.

We also evaluated the impact of ACCI inhibition on steatosis and fibrosis through repeated

compound-1 dosing in a genetic and diet-induced WD-fed MC4R KO mouse model. This model shows

multiple histopathological features common to NASH patients, including hepatic steatosis, inflammation,

and fibrosis. Further, the expression of liver lipogenesis-related genes, including ACC1, are elevated in this

mouse model compared to WT control mice (Itoh et al., 2011; Konuma et al., 2015; Shiba et al., 2018).

The reported pathological features in this model were also noted in our WD-fed MC4R KO mice. In

contrast to the increased ACC1 expression, expression of 4CC2 was unchanged in the livers of model mice

compared to that in WT mice (Supplementary Figure 1). This is consistent with the findings of a previous

study on human NAFLD patients (Kohjima et al., 2007), suggesting that ACC1 might contribute more

strongly to NAFLD progression than ACC2.

Following 8 weeks of compound-1 treatment, hepatic TG accumulation was attenuated and plasma

AST and ALT levels were significantly reduced, indicating that ACCI1 inhibition improved hepatic

steatosis resulting in ameliorated hepatocellular damage. Furthermore, compound-1 reduced the mRNA

expression of genes related to inflammation and collagen synthesis marker levels, hepatic collagen content,

and Sirius red-positive area, suggesting that ACC1 inhibition can also reduce inflammation and fibrosis

progression either directly by its inhibition in non-hepatocytes or indirectly by reducing the hepatic lipid
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content (Bates et al., 2020). Indeed, we observed a correlation between reduced M-CoA concentration via

ACCI inhibition and reduced hepatic TG and collagen content. Cumulatively, these results suggest that

inhibiting hepatic DNL by selective ACCI1 inhibition may represent a viable strategy for treating

NAFLD/NASH.

Although the Sirius red-positive area was not reduced following treatment with 30 mg/kg of

compound-1, this may not be attributed to the diminished antifibrotic efficacy but rather, the remarkable

improvement of liver hypertrophy, which increases the total analysis area per analysis unit screen at 30

mg/kg compared to that in the other groups. Indeed, fibrosis gene expression and total hepatic collagen

content were dose-dependently decreased following compound-1 treatment. However, further studies are

needed to address the discrepancy between the hepatic collagen content and Sirius red-positive area.

BW loss was observed in WD-fed MC4R KO mice treated with 30 mg/kg compound-1 compared to

vehicle-treated mice. Although the improvement in hepatic hypertrophy could be partially considered as a

cause of the BW loss, we hypothesize that compound-dependent toxicities account for the primary cause at

the highest dose. Heterozygous ACC1 mutant mice and liver-specific ACC1-deficient mice did not show

BW reduction compared to WT mice (Abu-Elheiga et al., 2005; Harada et al., 2007) indicating that the

inhibition of ACCl in the liver is not responsible for the reduced BW. We further evaluated the specificity

of compound-1 for 72 panels, including G-protein-coupled receptor, kinase, non-kinase enzyme, ion

channel, transporter, and nuclear hormone receptor up to concentrations of 10 uM, and the compound

corresponded to only 5-hydroxytryptamine receptor 2B (HTR2B) (ICso = 3.3 uM; data not shown).
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However, this efficacy of HTR2B is not expected to have contributed to the observed in vivo toxicity as the

estimated unbound fraction-based C,,.x at 30 mg/kg in WD-fed MC4R KO mice was less than 160 nM,

which was > 20-fold lower than the in vitro 1Csy against HTR2B.

We were unable to discern the impact of weight loss observed with 30 mg/kg compound-1 on the

improvement in NASH caused by ACCI inhibition. Previously we confirmed that 15% calorie restriction

resulted in 11.6% reduction in BW without significantly reducing plasma ALT and AST levels or hepatic

collagen content in WD-fed MC4R KO mice compared to animals fed ad libitum (data not shown).

However, marked BW loss (> 10%) improved fibrosis in NAFLD/NASH patients (Mummadi et al., 2008,

Glass et al., 2015). Therefore, further studies are needed to confirm whether BW loss or ACC1 inhibition

was responsible for the anti-NASH effect of compound-1 at 30mg/kg.

Many pre-clinical and clinical studies have shown that ACC1/2 dual inhibitors increase plasma TG

concentrations, which may be a signaling cascade that upregulates TG re-esterification genes and flux

(Kim et al., 2017; Bergman et al., 2020; Mitsuharu et al., 2020; Chen et al., 2019; Goedeke 1 et al., 2018).

Indeed, compound-1 significantly increased the expression of ACC1, Fasn, and Scdl, which are SREBP1c

target genes. However, compound-1 did not significantly elevate plasma TG concentrations compared to

WT mice (Table 2). We also confirmed that repeated compound-1 dosing for 8 weeks did not increase

plasma TG levels in the AMLN diet-fed DIO-NASH model, a diet-induced pre-clinical NAFLD/NASH

mouse model, compared to those in lean and vehicle-treated mice (data not shown). As serum TG

concentrations are not increased by ACC1/2 inhibitors at a dose that partially inhibits hepatic DNL
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(Bergman et al., 2020), and the cellular specific hepatic M-CoA level is compensated by ACC2 activity

under ACC1 inhibition conditions (Mao et al., 2006; Harada et al., 2007), one possible explanation for this

difference in plasma TG elevation between ACC1/2 inhibitors and a selective ACC1 inhibitor might be that

the latter is unable to fully suppress hepatic M-CoA production due to the flux via ACC2. In our study, the

maximum M-CoA-lowering effect by selective ACCI inhibition was less than that by ACC1/2 inhibition.

In addition, hepatic ACC2 expression was dose-dependently induced by compound-1 after repeated dosing

in WD-fed MC4R KO mice (Supplementary Figure 1). Although further investigations are required, these

data suggest that a selective ACC1 inhibitor could improve hepatic steatosis and fibrosis without causing

plasma TG elevation as ACC2 compensates the hepatic M-CoA level under ACCI inhibition, thereby

preventing any secondary feedback including increased circulating TGs.

In conclusion, to our knowledge, this is the first study to show that a selective ACC1 inhibitor has

sufficient efficacy in pre-clinical models, thus providing a viable approach for treating NAFLD/NASH.

The data demonstrate a robust reduction in hepatic steatosis and fibrosis in our pre-clinical animal models.

In addition, selective ACCI inhibition mitigates the increased TG concentrations observed with ACC1/2

inhibitors in clinical studies. These findings support the ACC1 inhibitor as a potential novel treatment for

NAFLD/NASH.
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Figure Legends

Figure 1. Effect of compound-1 on M-CoA content and fatty acid synthesis in HepG2 cells (A) Effect
of compound-1 on M-CoA content in HepG2 cells. (B) Effect of compound-1 on [14C] acetate
incorporation into fatty acids in HepG2 cells. Data are presented as the mean + SD (n = 3).

Figure 2. Effects of single oral dose of compound-1 in C57BL/6J mice. (A) Effect of compound-1 and
compound-2 on hepatic malonyl-CoA in normal diet-fed C57BL/6J mice 2 h after a single oral dose. Data
are presented as the mean = SD (n =5). $$“Bp <0.001 vs. vehicle by Aspin—Welch test; ** p <0.01, *** p <
0.001 vs. vehicle by Dunnett’s test. (B) Effect of compound-1 (10 mg/kg) on ['“C] acetate incorporation
into fatty acids in WD-fed C57BL/6J mice 2 and 5 h after dosing. Data are presented as the mean + SD (n
=3). " » <0.001 vs. vehicle by Student’s #-test; $ p <0.05 vs. vehicle by Aspin—Welch test.

Figure 3. Effect of chronic compound-1 on liver weight, triglyceride (TG) content, body weight (BW),
and food intake (FI) in WD-fed MC4R KO mice. (A) Liver weight, (B) hepatic TG (mg/tissue), (C) BW
change at day 56, and (D) cumulative FI at 56 days. Data are presented as the mean + SD (n = 5-8). ## p<
0.01 vs. WT by Student’s #-test; 558 p <0.001 vs. WT by Aspin—Welch test; *** p < 0.001 vs. vehicle by
Dunnett’s test; " p < 0.01 vs. vehicle by Steel’s test.

Figure 4. Effect of chronic compound-1 on hepatic mRNA expression in WD-fed MC4R KO mice.
Gene expression of (A) MCP-1, (B) F4/80, (C) Collal, (D) Coll a2, (E) aSMA, and (F) TGF-pI. Data are
presented as the mean + SD (n = 5-8). #p <0.05, ###p <0.001 vs. WT by Student’s #-test; $$$p <0.001 vs.

WT by Aspin—Welch test; * p < 0.05 vs. vehicle by Dunnett’s test; Vp < 0.05, Wp < 0.01 vs. vehicle by

40

20z ‘6 |udy uoseuinor 134SV e Bio'sfeulnoliedse-ied| wouy pepeojumoq


http://jpet.aspetjournals.org/

JPET Fast Forward. Published on September 17, 2021 as DOI: 10.1124/jpet.121.000786
This article has not been copyedited and formatted. The final version may differ from this version.

Steel’s test.

Figure 5. Effect of chronic compound-1 on total hepatic M-CoA content in WD-fed MC4R KO mice.
Data are presented as the mean + SD (n = 5-8). *** p < 0.001 vs. vehicle by Dunnett’s test.

Figure 6. Effect of chronic compound-1 on liver fibrosis in WD-fed MC4R KO mice. (A) Total hepatic
collagen content, (B) Sirius red-positive area, (C) Representative images of liver sections stained with
Sirius red (magnification 10x, scale bar = 100 pm), (D) Correlation between hepatic M-CoA and hepatic
TG, and (E) Correlation between hepatic M-CoA and hepatic collagen. Data are presented as the mean +
SD (n = 5-8)." p < 0.001 vs. WT by Student’s ¢-test;*** p < 0.001 vs. WT by Aspin—Welch test; * p <

0.05, ** p <0.01, *** p <0.001 vs. vehicle by Dunnett’s test.
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Tables

Table 1. Inhibitory activity of compound-1 and compound-2 on recombinant mouse ACC1 and

ACC2 proteins

mACCI1 ICsy (nM) mACC2 ICsy (nM)
Compound-1 1.9 > 10,000
Compound-2 6.0 6.4

42

20z ‘6 |dy uoseuinor 134S Y e Blo'sfeulnolfiadse-iad | wouy pspeojumoq


http://jpet.aspetjournals.org/

JPET Fast Forward. Published on September 17, 2021 as DOI: 10.1124/jpet.121.000786

This article has not been copyedited and formatted. The final version may differ from this version.

Table 2. Effect of chronic compound-1 on plasma parameters in WD-fed MC4R KO mice

Mice WT WD-fed MC4R KO
Compound-1
Vehicle Vehicle
Treatment 3 mg/kg 10 mg/kg 30 mg/kg
(n=5) (n=8)
(n=8) (n=8) (n=8)

AST Pre 41.8+7.0 636949645 | 601.7+108.6 6132+ 101.7 6207+ 923
UML) post | 643+128 649.6 + 86.7 5264+ 84.6" 268.9+61.7" 1053+8.0"
ALT Pre 2.1+46 857.6+103.9%° | 8495+ 1332 8602+ 118.8 858.0+ 113.1
(AUL)  post | 204=14.1 840.7 + 1244 612249427 283.9+£740M 546+9.1"

16 Pre | 132.0+16.0 85.1 4 15.9 % 8824227 755+ 15.1 8174258
(mg/dL)  post | 117.5+39.6 752+923 13203627 146.0£31.9™ 1593+ 73.8 "
TCho  Pre 95.54 6.2 405.5£22.45% 393.1 4383 3872 4 26.6 403.0 £313
(mg/dL)  pogt 97.0+ 5.0 4292+ 18.6 3904 +37.7° 30534372 164.8 4254

“Plasma parameters were measured before (Pre) and after (Post) 8 weeks of treatment.

"Data are presented as the mean + SD (n = 5-8).

" p<0.001 vs. WT by Student’s r-test, $$$p <0.001 vs. WT by Aspin—Welch test.

* p<0.05, ¥** p <0.001 vs. vehicle by Dunnett’s test.

Fp<0.05," p<0.01 vs. vehicle by Steel’s test.
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Supplementary Materials and Methods
Measurement of pharmacokinetics in mice

Plasma concentrations of compound-1 were measured using the LC/MS/MS method. Plasma was
precipitated using acetonitrile containing the internal standard, diclofenac. The precipitated sample was
centrifuged for 5 min at approximately 3000 % g. The supernatants were diluted with the mobile phase and
injected into the LC/MS/MS system. This system comprised a 20AD-VP system (Shimadzu, Kyoto, Japan)
and a triple quadrupole mass spectrometry detection API-5000 (AB Sciex, Framingham, MA, USA),
equipped with a turbo ion spray ionization source in the positive ionization mode. Chromatographic
separation was achieved using a reversed phase (C18) column [Shim-pack XR-ODS (2.2 um, 2.0 x 30 mm);
Shimadzu, Kyoto, Japan] at 50 °C. The mobile phase consisted of 0.2% (v/v) formic acid in 0.01 M
ammonium formate (pH 3.0; solvent A) and 0.2% (v/v) formic acid in acetonitrile (solvent B), which was
delivered at a flow rate of 0.7 mL/min. The analyte was eluted using a linear gradient of 95% solvent A/5%
solvent B to 5% solvent A/95% solvent B. Detection was performed using multiple reaction monitoring in
the positive ionization mode (SRM m/z = 424.2 — 101.1 for T-3773082 and m/z = 296.1 — 214.2 for
diclofenac). Analyst software™ (version 1.6.2; AB Sciex) was used for data acquisition and processing. The
concentration of compounds in each sample was back calculated using a calibration curve generated from a

set of calibration standards.



Supplementary data

Supplementary Table S1. Plasma compound-1 concentration in normal-fed C57BL/6J mice 2 h after

oral administration

Plasma concentration (1g/mL)
Dose (mg/kg)
Mean SD
0.3 0.686 0.119
1 2.243 0.367
3 6.045 0.981
10 18.762 2.957
30 51.018 3.438
100 115.174 3.555

Data are presented as the mean + SD (n=5)



Supplementary Table S2. Plasma concentration and pharmacokinetic parameters of compound-1 in

the plasma of WD-fed MC4R KO mice after 8 weeks of repeated oral administration

A)
( Plasma concentration (ug/mL)
Time
3 mg/kg 10 mg/kg 30 mg/kg
® Mean SD Mean SD Mean SD
0 2.138 0.023 5.891 0.832 16.519 2.840
0.5 6.699 1.349 21.532 2.040 41.969 7.436
1 8.427 1.336 23.485 0.497 44.202 16.166
2 8.239 0.384 25918 7.103 66.524 9.868
6 5.679 0.196 19.836 0.840 60.414 2.923
(B)
Dose 3 mg/kg 10 mg/kg 30 mg/kg
Crmax (ng/mL) 8.427 25918 66.524
Tmax (h) 1.00 2.00 2.00
AUCo-6n (ng-h/mL) 42.160 134.320 345.404
MRT (h) 2.78 291 3.19

Data are presented as the mean + SD (n = 3).
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Supplementary Figure S1. Effect of chronic compound-1 on hepatic mRNA expression in WD-fed
MC4R KO mice. Gene expression of (A) ACC1, (B) ACC2, (C) Fasn, and (D) Scdl. Data are presented as
the mean £ SD (n = 5-8). " p< 0.001 vs. WT by Student’s t-test; *** p < 0.001 vs. WT by Aspin-Welch test;

P p<0.05,"p<0.01 vs. vehicle by Steel’s test.



