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Abstract  

Huntington’s Disease (HD) is an autosomal dominant neurodegenerative disease that 

leads to progressive motor impairment with no available disease-modifying treatments. Current 

evidence indicates that exacerbated postsynaptic glutamate signaling in the striatum plays a key 

role in the pathophysiology of HD. However, it remains unclear whether reducing glutamate 

release can be an effective approach to slow the progression of HD. Here, we show that the 

activation of metabotropic glutamate receptors 2 and 3 (mGluR2/3), which inhibit presynaptic 

glutamate release, improves HD symptoms and pathology in heterozygous zQ175 knock-in 

mice. Treatment of both male and female zQ175 mice with the potent and selective mGluR2/3 

agonist LY379268 for either 4 or 8 weeks improves both limb coordination and locomotor 

function in all mice. LY379268 also reduces mutant huntingtin aggregate formation, neuronal 

cell death, and microglia activation in the striatum of both male and female zQ175 mice. The 

reduction in mutant huntingtin protein correlates with the activation of a GSK3β-dependent 

autophagy pathway in male, but not female, zQ175 mice. Furthermore, LY379268 reduces both 

Akt and ERK1/2 phosphorylation in male zQ175 mice but increases both Akt and ERK1/2 

phosphorylation in female zQ175 mice. Taken together, our results indicate that mGluR2/3 

activation mitigates HD neuropathology in both male and female mice but is associated with the 

differential activation and inactivation of cell signaling pathways in heterozygous male and 

female zQ175 mice.  This further highlights the need to take sex into consideration when 

developing future HD therapeutics.  

Keywords: Glutamate, mGluR, Sex, Autophagy, Huntingtin, Neurodegeneration, GPCR 

Significance statement: The mGluR2/3 agonist LY379268 improves motor impairments and 

reduces pathology in male and female zQ175 Huntington’s mice. The beneficial outcomes of 

LY379268 treatment in Huntington’s mice were mediated by divergent cell signalling pathways 

in both sexes. We provide evidence that mGluR2/3 agonists can be repurposed for the 
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treatment of Huntington’s disease, and we emphasize the importance of investigating sex as a 

biological variable in preclinical disease modifying studies.
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Introduction  

 Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder 

characterized by premature loss of medium spiny striatal neurons (MSNs) that leads to 

progressive motor disturbance, cognitive impairment, behaviour difficulties and ultimately death 

(Martin and Gusella, 1986; Roos, 2010). The disease typically manifests at middle-age and is 

caused by the expansion of a polyglutamine (CAG) repeat in the N-terminal region of the 

Huntingtin protein (MacDonald et al., 1993). The proteolytic cleavage of polyglutamine-

expanded huntingtin proteins at their N-terminus results in the formation of cytoplasmic and 

intranuclear aggregates that strongly correlate with HD symptoms and severity (Andrew et al., 

1993; Furtado et al., 1996; DiFiglia et al., 1997). Despite this well-characterized cause and the 

feasibility of early genetic diagnosis, the molecular mechanism(s) underlying HD pathogenesis 

remain poorly understood and disease modifying treatments for HD are lacking.  

 Glutamate is the major mediator of excitatory transmission in the brain and considerable 

evidence suggests that impaired glutamate uptake and glutamate-induced toxicity contribute to 

the selective loss of striatal neurons in HD (Hassel et al., 2008; Fan et al., 2009; Ribeiro et al., 

2011, 2017).  Previous reports indicate that the function of glutamate transporter-1, the primary 

glial glutamate transporter responsible for the uptake of about 90% of the extracellular 

glutamate, is impaired in HD mice (Behrens et al., 2002; Huang et al., 2010). More so, 

intrastriatal injection of glutamate and its analogue kainic acid induces a similar pattern of 

enzymatic changes, including large losses of glutamic acid decarboxylase and choline 

acetyltransferase in the striatum, as those reported in HD. Similarly, the N-methyl-D-aspartate 

receptor (NMDAR) agonist quinolinic acid causes striatal lesions that mimic the selective 

depletion of MSN seen in HD (Beal et al., 1991). Furthermore, genetic deletion of metabotropic 

glutamate receptor 5 (mGluR5), a heterotrimeric G protein-coupled receptor (GPCR) highly 

expressed in the striatum, in a Q111 knock-in HD mouse model improves rotarod performance 
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and reduces the size of mutant huntingtin (mHTT) aggregates (Ribeiro et al., 2014). 

Pharmacological blockade of mGluR5 with the negative allosteric modulator CTEP in male 

zQ175 knock-in (zQ175) HD mice also improves motor function, prevents neuronal cell death, 

and promotes autophagic removal of mHTT  aggregates (Abd-Elrahman et al., 2017; De Souza 

et al., 2020). Therefore, it is evident that reducing postsynaptic glutamatergic signaling can 

ameliorate HD neuropathology and should be investigated as a treatment strategy. 

 Metabotropic glutamate receptors 2 and 3 (mGluR2/3) are mainly located on 

corticostriatal presynaptic terminals, and their activation reduces excessive glutamate release 

via negative feedback mechanisms (Conn and Pin, 1997; Ribeiro et al., 2017). Previous studies 

have shown that selective mGluR2/3 agonists can protect against NMDA-induced neuronal 

death in vitro (Buisson, 1996; Battaglia et al., 1998; Kingston et al., 1999). Interestingly, a 

reduction in the expression of mGluR2/3 is reported in symptomatic R6/2 HD transgenic mice in 

the absence of detectable striatal neuron loss (Cha et al., 1998) . Furthermore, chronic 

administration of the maximum tolerated dose of the mGluR2/3 agonist LY379268 in R6/2 

transgenic mice improves survival time and some motor deficits, but the effects of LY379268 on 

HD neuropathology have not been investigated in HD mice that better reproduce HD phenotype 

(Schiefer et al., 2004; Reiner et al., 2012). There is also growing evidence that sex may 

influence the HD phenotype and neuropathology in HD rodent models and patients (Dorner et 

al., 2007; Bode et al., 2008; Zielonka and Stawinska-Witoszynska, 2020; Hentosh et al., 2021). 

This is particularly important given that we and others have previously reported sex-specific 

differences in glutamate signaling in Alzheimer’s and Huntington’s diseases (Padovan-Neto et 

al., 2019; Abd-Elrahman, Albaker, et al., 2020).  Therefore, it is of interest to study the disease-

modifying properties of mGluR2/3 agonists in the heterozygous zQ175 mouse model of HD that 

better reflects the slow and progressive nature of HD pathology in both male and female mice.  

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on July 30, 2021 as DOI: 10.1124/jpet.121.000735

 at A
SPE

T
 Journals on M

arch 20, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


7 
 

 LY379268 is a potent and selective agonist of mGluR2/3 that was first developed in 

1999 and showed a potent agonist activity towards both receptors with an EC50 in the low 

nanomolar range (Monn et al., 1999). LY379268 did not produce any measurable effects on 

mGluR1, mGluR5, mGluR4, mGluR7 and mGluR8 at concentrations up to 10 µM, but showed 

weak agonist activity towards mGluR6 at high nanomolar concentrations (Monn et al., 1999). 

LY379268 has also shown effectiveness in animal models of Huntington’s disease (Schiefer et 

al., 2004; Reiner et al., 2012), amyotrophic lateral sclerosis (ALS) (Battaglia et al., 2015), 

Parkinson’s disease (Battaglia et al., 2003), seizure (Moldrich et al., 2001) and drug abuse 

(Bossert et al., 2005). Importantly, analogues of LY379268 were found to be safe and well-

tolerated in a phase-2 clinical trial for schizophrenia patients (Imre, 2007; Patil et al., 2007). 

Based on the safety and efficacy in other neurological and neurodegenerative diseases, we 

investigate whether targeted activation of mGluR2/3 using LY379268 improves HD symptoms 

and neuropathology in both male and female zQ175 HD mice. We find that chronic treatment of 

zQ175 mice with LY379268 improves motor impairment and reduces mHTT aggregate 

pathology in both male and female heterozygous zQ175 mice.  However, we find that LY379268 

activates and inactivates divergent cell signaling pathways in male and female zQ175 mice.  

Our findings highlight the therapeutic potential of activating mGluR2/3 in HD and further 

implicate the importance of investigating sex as a biological variable in preclinical disease-

modifying studies (Shansky and Murphy, 2021).  
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Materials and Methods 

Reagents 

(1R,4R,5S,6R)-4-Amino-2-oxabicyclo [3.1.0] hexane-4,6-dicarboxylic acid (LY379268; 

2453) was purchased from Cedarlane (Burlington, Canada). Horseradish peroxidase (HRP)-

conjugated anti-rabbit immunoglobulin G secondary antibody (G21234), HRP-conjugated anti-

mouse secondary (G21040) and rabbit anti-ERK1/2 (61-7400) were from Thermofisher 

Scientific (Waltham, USA). Rabbit anti-phospho-p44/42 ERK1/2 (T202/Y2204, 9101S), anti-

phospho-GSK3β (S9, 9323s), anti-phospho-Akt (S473, 9271S) and mouse anti-GSK3β (9832S), 

anti-Akt (2920S) were from Cell Signalling Technology (Danvers, USA). Mouse anti-p62 

(ab56416), anti-vinculin (ab29002) and rabbit anti-ZBTB16 (ab39354), anti-mGluR2/3 (ab6438) 

and anti-Iba1 (ab178847) were from Abcam (Cambridge, USA). Rabbit anti-ATG14 (PD026) 

was from Cedarlane (Burlington, Canada). Mouse anti-NeuN (ABN78) and anti-Huntingtin 

(clone mEM48; MAB5374) were from Sigma-Aldrich (St. Louis, USA). Rabbit anti-β-Tubulin 

(T2200) was from Sigma-Aldrich. Reagents used for Western blotting were purchased from Bio-

Rad (Mississauga, Canada). All other biochemical reagents were from Sigma-Aldrich (St. Louis, 

USA).  

Animals 

All animal experimental protocols were approved by the University of Ottawa Institutional 

Animal Care Committee and were in accordance with the Canadian Council of Animal Care 

guidelines. Animals were group caged and housed under a constant 12-hour light/dark cycle 

and food and water were given ad libitum. Wild-type and Heterozygous zQ175 HD mice carrying 

~188 CAG repeats expansions were obtained from the Jackson Laboratory and bred to 

establish littermate-controlled male and female wild-type (Wt) and heterozygous zQ175 (zQ175) 

mice. Groups of 24 male and female Wt and zQ175 mice were aged to 12 months of age and 

12 mice from each group were treated with either saline or LY379268 (3mg/kg/day dissolved in 

saline). Both saline and LY379268 were delivered via subcutaneously implanted Alzet Osmotic 
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Pumps (2002) and pumps were replaced once 4 weeks after initial implantation. The drug dose 

was calculated at the time of pump implantation according to body weight and is based on a 

dose range that was proven to be tolerable and effective in amyotrophic lateral sclerosis (ALS) 

mice (Battaglia et al., 2015). All groups of mice were tested in a series of behaviour experiments 

after 4 weeks and 8 weeks of drug treatments. At the end of 8 weeks of treatment, mice were 

sacrificed, and the brains were collected and randomized for biochemical experiments and 

immunostaining.  

Behavioural analysis  

All animals were habituated in the testing room for a minimum of 30 minutes before 

testing. All behavioural tests were performed blindly and during the animal’s dark cycle.  

Forelimb grip strength 

The grip strength of each mouse was measured using the Chatillon DEF II Grip Strength 

Meter (Columbus Instruments). Mice were held over the grid of the instrument by their tails and 

allowed to firmly grip the bar. The mice were then pulled horizontally away from the bar using 

constant force and at a speed of ~2.5cm/s until they released the bar. Each mouse was tested 8 

times with a break of 5s in between each trial and the values of maximal peak force were 

recorded (Abd-Elrahman et al., 2017).  

Open field test 

Mice were individually placed in the bottom-left corner of an opaque and illuminated 

(~300 lux) open field arena (45cm X 45cm X 45cm) and allowed to explore for 10 min. Activity of 

the mice were recorded by an overhead camera connected to a computer in another room. 

Total distance travelled and velocity were calculated using the Noldus Ethovision software (Abd-

Elrahman et al., 2017).  

Rotarod test  

Mice were introduced to the rotarod apparatus (IITC, Woodlands Hills, CA, USA) by 

placing them on the rotarod at rest for 3 minutes on the first day. Four 5-min-long trails were 
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then performed daily for two consecutive days using an accelerating protocol (from 5 to 45 RPM 

in 300 seconds) with 10 minutes of rest between each trial. Any mice remaining on the rotarod 

after 300 seconds were removed and the time scored as 300s. Average of the latency to fall 

obtained from the four trials of the second day was used for analysis (Abd-Elrahman et al., 

2017).  

Horizontal ladder test 

The forelimb and hindlimb coordination and placement of the mice were tested using a 

horizontal ladder. The mice were required to traverse a horizontal ladder with a total of 121 

regularly (1 cm apart) and irregularly (0.5 - 2.5 cm apart) spaced metal rungs (0.15 cm in 

diameter and 2 cm from the bottom of the wall). The mice were first trained (1 trial) and then 

filmed crossing the ladder for 4-5 trials using high-definition camera. The time to finish the task 

and the number of successful and missed steps during the two best consecutive trials were 

quantified and percentage error was calculated (Abd-Elrahman et al., 2017).  

Immunoblotting  

Mouse brain was dissected, and striatum was lysed in ice-cold lysis buffer [25 mM 

HEPES, 300 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 1% Triton-X] containing protease 

inhibitors cocktail (100 µM AEBSF, 2 µM leupeptin, 80 nM aprotinin, 5 µM bestatin, 1.5 µM E-64 

and 1 µM pepstatin A) and phosphatase inhibitors (10 mM NaF and 500 μM Na₃VO₄). Tissue 

debris was pelleted and removed by centrifugation twice at 20,000 xg at 4°C for 10 minutes. 

Supernatants were collected and their protein concentrations were measured using Bradford 

Protein Assay (Bio-Rad). Homogenates were diluted to a protein concentration of 1 µg/µL in a 

mix of lysis buffer and β-mercaptoethanol-containing 3X loading buffer and then boiled for 10 

minutes at 90°C. Aliquots containing 50 µg of total protein were resolved by electrophoresis on 

7.5% SDS-polyacrylamide gels and transferred onto nitrocellulose membranes (Bio-Rad). Blots 

were blocked for 1 hour at room temperature in tris-buffer saline (pH 7.6) containing 0.05% 

Tween 20 (TBST) containing 5% non-fat dry milk. Blots were incubated overnight at 4°C with 
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primary antibodies diluted (1:1000) in TBST containing 1% non-fat dry milk. Blots were washed 

3 times (5min/wash) with TBST the next day and incubated with anti-rabbit/mouse secondary 

antibodies (1:5000) diluted in TBST containing 1% non-fat dry milk for 1 hour at room 

temperature. Blots were washed again in TBST and then bands representing our proteins of 

interest were detected using SuperSignal™ West Pico PLUS Chemiluminescent Substrate 

using Bio-Rad chemiluminescence (Abd-Elrahman et al., 2018; Gupta et al., 2019).  

Immunohistochemistry 

One hemisphere of each brain sample was fixed in 4%-paraformaldehyde and then 

transferred to 70% ethanol for storage at 4°C. The samples were embedded in paraffin and then 

coronally sectioned through the striatum at a thickness of 5 µm. Sections were then incubated 

with the mouse monoclonal EM48 antibody at 1:100, Neuronal Nuclei (NeuN) antibody at 

1:1500, or IBA1 antibody at 1:8000 dilution for 30 minutes at room temperature and detected 

using an HRP conjugated compact polymer system. Slides were then stained using 3,3'-

Diaminobenzidine (DAB) as the chromogen, counterstained with Hematoxylin, mounted and 

cover slipped. Slide were scanned using a Leica Aperio Slide scanner at 20× and the number of 

EM positive aggregates, NeuN or Iba1 positive cells were counted in representative 900 µm2 

areas of the striatum. Six sections per mouse were analyzed and for each section 2 ROIs in the 

striatum were quantified (Abd-Elrahman et al., 2017; Abd-Elrahman, Hamilton, et al., 2020) .  

Statistical Analysis 

Means ± SEM for each independent experiment is shown in the various figure legends. 

GraphPad Prism 9 software was used to analyze the data for statistical significance. Statistical 

significance was determined by Student’s t-test or a series of 2 (strain) × 2 (drug treatment) 

Analysis of Variance (ANOVAs), followed by Fisher’s least significant difference comparisons to 

determine the source of significant interactions. Statistical details of individual experiments are 

indicated in figure legends.  
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Results  

LY379268 treatment rescued motor deficits in both male and female zQ175 mice 

To investigate the potential role of pre-synaptic regulated glutamate release in HD 

progression and pathology, we first tested whether mGluR2/3 activation would rescue motor 

deficits in symptomatic heterozygous male and female zQ175 mice. Twelve-month-old male and 

female wild-type and heterozygous zQ175 mice were treated with either saline or the mGluR2/3 

agonist, LY379268, using implanted osmotic pumps (releasing drug at a rate of 3mg/kg/day) 

and their motor and locomotor performance were assessed after 4 weeks (13-month-old) and 8 

weeks (14-month-old) of drug treatment. Both saline-treated 13- and 14-month-old male and 

female zQ175 mice showed significant impairment in fore limb grip strength compared to age- 

and sex-matched, saline-treated wild-type mice (Fig. 1A and 1B). LY379268 treatment for either 

4 or 8 weeks resulted in a significant improvement in grip strength in both male and female 

zQ175 mice when compared with saline-treated counterparts (Fig. 1A and 1B).  When tested on 

an accelerating rotarod, saline-treated male and female zQ175 mice spent less time on the 

rotarod when compared to age- and sex-matched wild-type controls (Fig.1C and 1D).  

LY379268 treatment for both 4 and 8 weeks improved the performance of both male and female 

zQ175 mice to a level that was comparable to age- and sex-matched, saline-treated wild-types 

(Fig. 1C and 1D). However, LY379268 treatment for either 4 or 8 weeks did not result in a 

statistically significant improvement in rotarod behavior in male zQ175 mice when compared to 

saline-treated male zQ175 mice, although there was a trend towards behavior phenotype 

improvement that could not be addressed by prolonging drug treatment due to ethical concerns 

(Fig.1C and 1D).  In contrast, LY379268 treatment of female zQ175 mice for either 4 or 8 weeks 

resulted in a significant improvement in rotarod performance when compared to saline-treated 

female zQ175 mice (Fig.1C and 1D). 
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To further examine the potential effects of LY379268 treatment on motor deficits in 

zQ175 mice we examined the performance of our mice in the horizontal ladder task and their 

locomotor activity in open field.  We found that both male and female saline-treated zQ175 mice 

made significantly more errors in the horizontal ladder rung test than age- and sex-matched 

wild-types (Fig. 2A and 2B).  However, we found that the treatment of both male and female 

zQ175 with LY379268 for either 4 or 8 weeks significantly improved limb coordination and error 

scores in the horizontal ladder rung test, when compared with age- and sex-matched, saline-

treated wild-type mice (Fig. 2A and 2B). We also found that male and female zQ175 mice 

treated with saline for either 4 or 8 weeks exhibited reduced locomotor activity in an open field 

(reduced velocity) compared to saline-treated age- and sex-matched wild-types (Fig. 2C and 

2D). LY379268 treatment for either 4 or 8 weeks significantly improved locomotor activity of 

both male and female zQ175 mice when compared with saline-treated, age- and sex-matched 

zQ175 mice (Fig. 2C and 2D). However, locomotor activity of LY379268-treated zQ175 mice 

remained reduced overall when compared with age- and sex-matched, saline-treated wild-types 

(Fig. 2C and 2D).  Together, these results indicated that LY379268 activation of mGluR2/3 

reversed motor deficits in the majority of motor and locomotor behavior tests examined in both 

male and female heterozygous zQ175 mice.  

LY379268 treatment reduced huntingtin aggregate number and neuronal loss in both 

male and female zQ175 mice 

mHTT aggregates represent the key pathological hallmark of HD and we previously 

demonstrated that both genetic and pharmacological silencing of mGluR5 reduced the number 

of mHTT aggregates in Q111 and zQ175 HD mice, respectively (Ribeiro et al., 2014; Abd-

Elrahman et al., 2017). This suggested that pathological glutamate signaling contributed to the 

accelerated mHTT deposition in HD brain. Therefore, we examined whether the improvement in 

motor deficits in LY379268-treated zQ175 mice was also accompanied by a reduction in the 
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number of mHTT aggregates in the striatum. We focused on the striatum as it harbours dense 

glutamatergic corticostriatal inputs with high expression of many glutamate receptors and 

exhibits the most profound neuropathological deficits in HD  (Wüllner et al., 1994). We found 

that following 8 weeks of LY379268 treatment, the number of mHTT aggregates in the striatum 

of both male and female zQ175 mice was significantly reduced when compared with sex-

matched saline-treated mice (Fig. 3A).  We then tested whether the improvement in motor 

function and pathology was associated with a rescue in neuronal survival by staining for 

neuronal nuclei (NeuN). The number of NeuN-positive cells was significantly lower in the 

striatum of saline-treated male and female zQ175 mice compared to sex-matched, saline-

treated wild-type mice (Fig. 3B and 3C).  We found that the number of NeuN-positive striatal 

neurons was increased in both LY379268-treated male and female zQ175 mice when compared 

with sex-matched, saline-treated zQ175 mice but this difference was more distinguishable in 

male LY379268-treated zQ175 mice (Fig. 3B and 3C). Together, these findings indicated that 

the improvement in motor function following mGluR2/3 activation in heterozygous zQ175 mice 

was correlated with a reduction in mHTT deposition and rescue in neuronal loss.  

LY379268 reduced microglial activation in both male and female zQ175 mice 

Microglia activation has been shown to contribute to the pathogenesis of several 

neurodegenerative diseases and was observed in pre-symptomatic gene carriers and 

symptomatic HD patients  (Tai et al., 2007; Björkqvist et al., 2008; Perry et al., 2010).  Thus, we 

quantified the number of activated microglia in the striatum of wild-type and zQ175 mice treated 

with either saline or LY379268 by staining for ionized calcium-binding adapter molecule 1 (Iba1), 

a protein that specifically identifies activated microglia (Ito et al., 1998). We detected a 

significant increase in the number of Iba1-positive cells in the striatum of both saline-treated 

male and female zQ175 mice when compared with sex-matched, saline-treated wild-types (Fig. 

4A and 4B).  LY379268 treatment reduced the number of Iba1-positive cells in both male and 
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female zQ175 striatal tissue when compared with sex-matched, saline-treated zQ175 mice (Fig. 

4A and 4B). Thus, mGluR2/3 activation appeared to reduce microglia activation and associated 

neuroinflammation in both male and female heterozygous zQ175 HD mice which potentially 

contribute to improved pathology and symptoms in HD mice of both sexes. 

LY379268 promoted GSK3β/ZBTB16/ATG14 autophagy in male but not female zQ175 

mice  

 We previously demonstrated that glutamate-mediated activation of mGluR5 

downregulated a novel ZBTB16-dependent autophagic pathway, which may inhibit the removal 

of proteotoxic aggregates in the brain of HD and AD mice (Abd-Elrahman et al., 2018, 2017; 

Abd-Elrahman and Ferguson, 2019; Ibrahim et al., 2021). Specifically, mGluR5 induced the 

inhibitory phosphorylation of GSK3β at S9 and the expression of Zinc finger and BTB domain-

containing protein 16 (ZBTB16), a member of ZBTB16-Cullin3-Roc1 E3-ubiquitin ligase complex. 

This resulted in the ubiquitination and proteasomal degradation of the autophagy related 14 

(ATG14) protein and inhibition of neuronal autophagy (Abd-Elrahman et al., 2018, 2017; Abd-

Elrahman and Ferguson, 2019; Ibrahim et al., 2021; Zhang et al., 2015).  Therefore, we tested 

whether activating mGluR2/3 that can modulate glutamate release using LY379268 enhanced 

the autophagic clearance of mutant huntingtin aggregates via the GSK3β/ZBTB16/ATG14 

pathway in both male and female zQ175 mice.  In saline-treated male zQ175 mice, we detected 

a significant increase in GSK3β-pS9 phosphorylation that was not detected in female mice (Fig. 

5A and 5B).  LY379268 treatment for 8 weeks reduced GSK3β-pS9 phosphorylation in male 

zQ175 mice, when compared with saline-treated male zQ175 mice, but had no effect on 

GSK3β-pS9 phosphorylation levels in female zQ175 mice (Fig. 5A and 5B). Eight-week 

LY379268 treatment also reduced ZBTB16 protein expression levels in male but not female 

zQ175 mice compared to sex-matched saline-treated zQ175 mice (Fig. 5C and 5D). In contrast, 

8-week LY379268 treatment of male but not female zQ175 mice increased ATG14 expression 
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compared to sex-matched saline-treated zQ175 mice (Fig. 5E and 5F).  Consistent with these 

observation, 8-week LY379268 treatment reduced p62 expression levels in male, but not female 

zQ175 mice, when compared with sex-matched saline-treated zQ175 mice (Fig. 5G and 5H).  

Thus, although LY379268 improved HD pathology in both male and female heterozygous 

zQ175 mice, it only contributed to the activation of the GSK3β/ZBTB16/ATG14-regulated 

autophagy in the striatum of male heterozygous zQ175 mice. This suggested that the 

mechanism(s) by which LY379268 contributed to mitigating HD neuropathology in zQ175 mice 

was sex-specific and mediated by yet to be defined cell signaling mediators and pathways.  

Akt and ERK1/2 phosphorylation in zQ175 mice is altered by LY379268 in a sex-

dependent manner 

 Protein kinase B (Akt) and extracellular signal-regulated protein kinases 1 and 2 

(ERK1/2) were shown previously to be activated following glutamate-dependent activation of 

both postsynaptic group I mGluRs and NMDARs (Gines et al., 2003; Ibrahim et al., 2021; Rong 

et al., 2003; Zhou et al., 2009).  Importantly, both Akt and ERK1/2 could phosphorylate GSK3β 

at S9 to potentially inhibit autophagy via ZBTB16-dependent mechanisms (Stambolic and 

Woodgett, 1994; Hetman et al., 2002; Beaulieu et al., 2009; Abd-Elrahman and Ferguson, 2019). 

Thus, we investigated whether sex-specific alterations in GSK3β/ZBTB16/ATG14 autophagy are 

correlated with alteration in Akt and ERK1/2 phosphorylation in both male and female zQ175 

mice.  We found that Akt-pS473 and ERK1/2-PT202/Y204 phosphorylation were significantly 

increased in male, but not female, saline-treated zQ175 mice (Fig. 6A-D).  LY379268 treatment 

of male zQ175 mice restored Akt-pS473 and ERK1/2-pT202/Y204 phosphorylation to saline-

treated male wild-type levels (Fig. 6A and 6C). In contrast, Akt phosphorylation was not different 

and ERK1/2 phosphorylation was significantly lower in saline-treated female zQ175 striatum 

when compared to saline-treated female wild-type mice (Fig. 6B and 6D).  Unlike what we 

observed in male mice, LY379268 treatment enhanced Akt and ERK1/2 phosphorylation in the 
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striatum of female zQ175 mice when compared to saline-treated female zQ175 striatum (Fig. 6B 

and 6D).  Thus, it was evident mGluR2/3 activation triggered sex-specific differences in the 

activation of both the ERK1/2 and Akt signaling pathways in heterozygous zQ175 mice, despite 

resulting in similar behavioral and pathological outcomes in both sexes.  
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Discussion 

Glutamate plays a key role in the pathophysiology of HD and both the genetic and 

pharmacological silencing of one postsynaptic glutamate receptor, mGluR5, is able to halt 

disease progression and mitigate mHTT pathology in two HD mouse models (Ribeiro et al., 

2014; Abd-Elrahman et al., 2017).  However, glutamate triggers excitotoxicity in HD brain via 

other glutamate receptors such as NMDARs and potentially mGluR1 (Heng et al., 2009; Ribeiro 

et al., 2011). Therefore, we investigated whether activating presynaptic mGluR2/3 might 

represent an effective disease-modifying approach to slow HD progression. Our results indicate 

that the activation of mGluR2/3 using the highly selective agonist, LY379268, to reduce 

glutamate release improves overall motor deficits in both male and female heterozygous zQ175 

HD mice. We also show that mGluR2/3 agonist reduces mHTT aggregates, microglia activation 

and neuronal loss in the striatum of heterozygous zQ175 HD mice of both sexes.  Interestingly, 

mGluR2/3 agonist-induced improvement in HD neuropathology was likely mediated by distinct 

cell signaling/receptor-dependent mechanisms in male and female heterozygous zQ175 HD 

mice. 

 Previous studies have demonstrated that LY379268 at the maximum tolerated dose (20 

mg/kg/day) improves the survival and motor deficits in the R6/2 model of HD and a lower dose 

of LY379268 (1.2 mg/kg/day) improves survival and motor function in R6/2 mice without 

reducing the formation of intranuclear mHTT aggregates (Schiefer et al., 2004; Reiner et al., 

2012).  For our studies we chose the heterozygous zQ175 model as it presents with less 

aggressive phenotype compared to the R6/2 model but recapitulates the slow and progressive 

manifestations of HD in humans, such as accumulation of mHTT aggregates in striatal and 

cortical neurons, neuronal loss, and motor impairments (Heikkinen et al., 2012; Menalled et al., 

2012; Smith et al., 2014).  We delivered LY379268 at a dose of 3 mg/kg/day via osmotic pumps 

since a similar treatment paradigm (1-5 mg/kg/day for 4 weeks) has proven to improve motor 
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deficits, survival and more importantly pathology in SOD1G93A mouse model of ALS (Battaglia 

et al., 2015). We find that prolonged administration of LY379268 for either 4 or 8 weeks results 

in a significant reduction in motor/locomotor impairment, striatal neuron death and mHTT 

aggregate formation in both male and female zQ175 mice at 12 months of age. This correlates 

with previously published work from our group and others reporting similar motor deficits at this 

age in this mouse model (Menalled et al., 2012; Smith et al., 2014; Abd-Elrahman et al., 2017).  

We also find a significant impairment in fore limb grip force in both male and female zQ175 mice, 

a motor deficit that we have previously detected for male zQ175 mice and was reported in HD 

patients (Reilmann et al., 2001; Menalled et al., 2012; Abd-Elrahman et al., 2017).   

 Evidence  indicates that activated microglia in the brains of pre-symptomatic, 

symptomatic and post-mortem HD patients along with elevated proinflammatory cytokines 

contributes to HD pathology (Tai et al., 2007; Björkqvist et al., 2008; Silvestroni et al., 2009). 

Similarly, we also detect an increase in the number of microglia in the striatum of both male and 

female zQ175 mice. LY379268 -mediated activation of mGluR2/3 reduces number of activated 

microglia in male and female zQ175 mice to levels that are observed in wild-type mice. It is 

worth noting that microglia express mGluR2/3 and when microglia are activated they releases 

glutamate that may contribute to the exacerbation of neuronal excitotoxicity (Barger et al., 2007; 

Garaschuk and Verkhratsky, 2019). More so, impaired glutamate uptake by of the glial 

glutamate transporter-1 was reported in HD mice (Behrens et al., 2002; Huang et al., 2010). 

Therefore, mGluR2/3 agonist treatment may represent an effective approach to reduce 

glutamate overspill from microglia to prevent the activation of excitotoxic glutamate receptor 

signaling in both microglia and neurons, thereby interrupting key cellular mechanisms involved 

in HD pathophysiology. 

Defects in autophagy, a catabolic process responsible for clearing toxic cellular cargos 

and protein aggregates, have been implicated in the pathophysiology of HD and it is thought 
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that this potentially exacerbates the deposition of mHTT in the brain (Li and Li, 2004; Cortes and 

La Spada, 2014; Abd-Elrahman et al., 2017; Croce and Yamamoto, 2019). We previously 

demonstrated that the improvement in motor and cognitive function in zQ175 mice following 

chronic mGluR5 blockade was dependent on the activation of ZBTB16-dependent autophagy to 

enhance clearance of mHTT aggregates (Abd-Elrahman et al., 2017; Abd-Elrahman and 

Ferguson, 2019). In fact, pathological glutamate signaling via mGluR5 induced an inhibitory 

phosphorylation of GSK3β that lead to ubiquitin-mediated degradation of the autophagy adaptor 

ATG14 via the ZBTB16-Cullin3-Roc1 E3-ubiquitin ligase complex (Zhang et al., 2015; Abd-

Elrahman et al., 2017; Ibrahim et al., 2021). Here we showed that LY379268-mediated 

activation of mGluR2/3 in male Q175 mice also reduced inhibitory Ser-9 phosphorylation of 

GSK3β and ZBTB16 expression in the striatum, which is accompanied by a rescue in ATG14 

expression and induction of autophagy, as reflected by a reduction in p62 protein expression. 

Thus, it was likely that mGluR2/3 activation reduces synaptic glutamate leading to a reduction in 

pathological post-synaptic glutamate signaling resulting in the activation of autophagy and 

improved HD neuropathology in male zQ175 mice. However, we did not detect any changes in 

the GSK3β/ZBTB16/ATG14 pathway in either saline or LY379268-treated female zQ175 

striatum, which was consistent with our previous studies in AD mice where we did not detect 

engagement of these cell signaling pathways in female mice (Abd-Elrahman, Albaker, et al., 

2020). Indeed, we showed that unlike males, GSK3β/ZBTB16/ATG14 pathway is not altered in 

female AD mice and hence, mGluR5 inhibition can only reactivate autophagy in male AD brain 

(Abd-Elrahman, Albaker, et al., 2020). Here we report a very similar sex-specific change in 

GSK3β/ZBTB16/ATG14 pathway in HD mice following treatment with LY379268 suggesting that 

the favorable outcomes of mGluR2/3 activation in HD mice are dependent at least in part on 

reducing postsynaptic mGluR5 signaling. It also shows that the reduction in mHTT aggregates 

in female zQ175 mice following mGluR2/3 activation was mediated via, yet to be identified, cell 

signaling mechanism(s) that do not involve the GSK3β/ZBTB16/ATG14 autophagy pathway. 
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This finding further supports a sex-specific contribution of pathological glutamate signaling to 

the neuropathology of many neurodegenerative diseases.   

While it remains less clear how mGluR5 directly regulates GSK3β phosphorylation, the 

most plausible candidates are Akt and ERK1/2 pathways. NMDAR activation is known to trigger 

both Akt and ERK1/2-dependent signaling in neurons (Gines et al., 2003; Zhou et al., 2009). 

Additionally, agonist-dependent activation of group I mGluRs enhances Akt signaling in 

response to phosphoinositide 3-kinase (PI3K) activation (Rong et al., 2003; Guhan and Lu, 

2004) and also triggers phosphorylation of ERK1/2 (Eng et al., 2016; Ibrahim et al., 2021; 

Stoppel et al., 2017).  Both Akt and ERK1/2 are known to phosphorylate GSK3β at S9 and 

inhibit its catalytic activity (Stambolic and Woodgett, 1994; Hetman et al., 2002; Beaulieu et al., 

2009). We detect a significant increase in Akt and ERK1/2 phosphorylation in the striatum of 

male zQ175 mice that may be attributable to exacerbated glutamate signaling. This is consistent 

with the enhancement of ERK1/2 and Akt phosphorylation we have previously observed in male 

homozygous zQ175 brain samples (Abd-Elrahman et al., 2017; Abd-Elrahman and Ferguson, 

2019). Similar to what we observe following mGluR5 antagonism, LY379268-mediated 

activation of mGluR2/3 restores Akt and ERK1/2 phosphorylation in male zQ175 mice.   

In female zQ175 mice, ERK1/2 and Akt signaling are not altered providing an 

explanation for the lack of change in GSK3β phosphorylation or ZBTB16-dependent autophagy. 

Rather, ERK1/2 signaling was reduced in saline-treated female zQ175 mice and LY379268 

enhanced the phosphorylation of Akt and ERK1/2 in the striatum of female zQ175 mice.  

Interestingly, mGluR2/3 is known to activate ERK1/2 and PI3K and it is possible that these 

signaling mechanisms are only activated in female zQ175 mice after treatment with LY379268 

since ERK1/2 and Akt were already activated in male zQ175 mice (Lin et al., 2014).  Thus, it is 

possible that LY379268 supports neuronal survival and differentiation in female zQ175 mice by 

triggering the cell survival mechanisms regulated by Akt and ERK1/2 downstream of mGluR2/3 
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(Rai et al., 2019).  It is also possible that mGluR2/3 activates ERK1/2 and Akt signaling via 

transactivation of receptor tyrosine kinase as has been reported for other members of the 

mGluR family (Wang et al., 2007).  While the underlying molecular basis of sex-specific 

mGluR2/3 signaling remains unclear, we can not rule out that mGluR2/3 may heterodimerize 

with other GPCRs in a sex-selective manner to trigger differential cell signaling between sexes 

(De Bartolomeis et al., 2013).   

In conclusion, we demonstrate that mGluR2/3 can be an effective pharmacological 

target to mitigate motor deficits, reduce mHTT aggregates accumulation, and rescue neuronal 

cell death in both male and female zQ175 HD mice. We also provide evidence that there are 

sex-specific differences in cell signaling mechanisms contributing to the pathophysiology of 

male and female zQ175 HD mice. mGluR2/3 agonists have proven to be safe and effective in 

clinical trials for schizophrenia and this study suggests they can be repurposed for the treatment 

of HD. We also further emphasize the importance of delineating sex-specific difference in the 

pathophysiology of all neurodegenerative disease when designing novel approaches for 

treatment. 
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Figure 1.  LY379268 improves grip strength and rotarod performance in male and female 

zQ175 mice.  

Mean ± SEM of grip strength [gram-force (gf)] after 4 weeks (A) and 8 weeks (B) of treatment 

with saline or LY379268 (3mg/kg/day subcutaneously via osmotic pump) of 12-month-old 

zQ175 and wild-type (Wt) male and female mice (n= 11-12 for each group). Mean ± SEM of 

latency to fall (sec) from accelerating rotarod after 4 weeks (C) and 8 weeks (D) of treatment 

with saline or LY379268 of 12-month-old zQ175 and Wt male and female mice (n= 11-12 for 

each group). *P < 0.05 by two-way ANOVA and Fisher’s least significant difference (LSD) 

comparisons.  

 

Figure 2.  LY379268 improves locomotor activity and performance on the ladder rung test 

in male and female zQ175 mice.  

Mean ± SEM of percent error (% error) in limb placement while completing the horizontal ladder 

task after 4 weeks (A) and 8 weeks (B) of treatment with saline or LY379268 (3mg/kg/day 

subcutaneously via osmotic pump) of 12-month-old zQ175 and wild-type (Wt) male and female 

mice (n= 11-12 for each group). Mean ± SEM of velocity (cm/sec) in open field arena after 4 

weeks (C) and 8 weeks (D) of treatment with saline or LY379268 of 12-month-old zQ175 and 

Wt male and female mice (n= 11-12 for each group). *P < 0.05 by two-way ANOVA and Fisher’s 

least significant difference (LSD) comparisons. 

 

Figure 3.  LY379268 reduces mHTT aggregates and neuronal loss in male and female 

zQ175 mice.  
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(A) Representative images of staining for mHTT using the EM48 antibody and quantification of 

the number of mHTT in striatal brain slices from 14-month-old male and female zQ175 mice 

following 8 weeks of treatment with saline or LY379268 (3mg/kg/day subcutaneously via 

osmotic pump). Representative images of staining for neuronal nuclei (NeuN)-positive (NeuN+) 

neurons and quantification of the number of NeuN+ neurons in striatal brain slices from 14-

month-old male (B) and female (C) zQ175 and Wt mice following 8 weeks of treatment with 

saline or LY379268. Scale bars is 100μm. Data are quantified from two different 900μm2 regions 

of 6 sections per mouse and four independent mouse brains from each group were used for 

analysis and presented as mean ± SEM. *P < 0.05 by Student’s t-test for EM48 and two-way 

ANOVA and Fisher’s least significant difference (LSD) comparisons for NeuN. 

 

Figure 4. LY379268 reduces microglia activation in heterozygous male and female zQ175 

mice.  

Representative images of staining for microglia using Iba1 antibody and quantification of the 

number of Iba1-positive (Iba1+) cells in striatal brain slices from 14-month-old male (A) and 

female (B) zQ175 and wild-type (Wt) mice following 8 weeks of treatment with either saline or 

LY379268 (3mg/kg/day subcutaneously via osmotic pump). Scale bars, 100μm. Data are 

quantified from two different 900μm2 regions of 6 sections per mouse and four independent 

mouse brains from each group were used for analysis and presented as mean ± SEM. *P < 0.05 

by two-way ANOVA and Fisher’s least significant difference (LSD) comparisons.  

Figure 5. LY379268 activates the GSK3β/ZBTB16/ATG14 autophagy pathway in 

heterozygous male but not female zQ175 mice.  

Representative immunoblots and quantification of GSK3β-pS9 with total GSK3β as the loading 

control in striatal lysates from 14-month-old male (A) and female (B) zQ175 and wild-type (Wt) 
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mice following 8 weeks of treatment with either saline or LY379268 (3mg/kg/day 

subcutaneously via osmotic pump). Representative immunoblots and quantification of ZBTB16 

(C; male and D; female), ATG14 (E; male and F; female), and p62 (G; male and H; female) 

with vinculin as the loading control in striatal lysates from 14-month-old zQ175 and Wt mice 

following 8 weeks of treatment with either saline or LY379268. Quantification is presented as 

mean ± SEM of fold change in GSK3β-pS9, ZBTB16, ATG14, and p62 band intensity relative to 

corresponding saline-treated Wt values (n=6). *P < 0.05 by two-way ANOVA and Fisher’s least 

significant difference (LSD) comparisons. 

 

Figure 6. LY379268 alters Akt and ERK1/2 phosphorylation in heterozygous zQ175 mice 

in a sex selective manner.   

Representative immunoblots and quantification of Akt-pS437 with corresponding Akt as the 

loading control in striatal lysates from 14-month-old male (A) and female (C) zQ175 and wild-

type (Wt) mice following 8 weeks of treatment with saline or LY379268 (3mg/kg/day 

subcutaneously via osmotic pump). Representative immunoblots and quantification of ERK1/2-

pT202/Y204 with corresponding ERK1/2 as the loading control in striatal lysates from 14-month-

old male (B) and female (D) zQ175 and Wt mice following 8 weeks of treatment with either 

saline or LY379268. Quantification is presented as mean ± SEM of fold change in Akt-pS437 

and ERK1/2-pT202/Y204 band intensity relative to corresponding saline-treated Wt values (n = 

6). Data. *P < 0.05 by two-way ANOVA and Fisher’s least significant difference (LSD) 

comparisons. 
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