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Abstract 

Synthetic high-density lipoprotein (sHDL) nanoparticles composed of apolipoprotein A-I 

(ApoA-I) mimetic peptide and phospholipids have been shown to reduce atherosclerosis in animal 

models. Cholesterol is mobilized from atheroma macrophages by sHDL into the blood 

compartment and delivered to the liver for elimination. Historically, sHDL drug discovery efforts 

were focused on optimizing peptide sequences for interaction with cholesterol cellular 

transporters rather than understanding how both sHDL components, peptide and lipid, influence 

its pharmacokinetics (PK) and pharmacodynamic (PD) profiles. We designed two sets of sHDL 

having either identical phospholipid but variable peptide sequences with different plasma stability, 

or identical peptide and phospholipids with variable fatty acid chain length and saturation. We 

found that sHDL prepared with proteolytically stable 22A-P peptide had 2-fold longer circulation 

half-time relative to the less stable 22A peptide. Yet, longer half-life did not translate into any 

improvement in cholesterol mobilization. In contrast, sHDL with variable phospholipid 

compositions showed significant differences in phospholipid PK, with distearoyl 

phosphatidylcholine-based sHDL demonstrating the longest half-life of 6.0 h relative to 1.0 h for 

palmitoyl-oleoyl phosphatidylcholine-based sHDL. This increase in half-life corresponded to a 

~6.5-fold increase in the area under the curve for the mobilized cholesterol. Therefore, the 

phospholipid component in sHDL plays a major role in cholesterol mobilization in vivo and should 

not be overlooked in the design of future sHDL. 

 

Significance Statement: The phospholipid composition in sHDL plays a critical role in 

determining half-life and cholesterol mobilization in vivo. 
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Introduction 

Reverse cholesterol transport (RCT) is a mechanism of cholesterol removal from the 

periphery to the liver for elimination. This transport starts when lipid-poor apolipoprotein A-I 

(ApoA-I) facilitates extracellular efflux of phospholipids and cholesterol through the 

transmembrane ATP-binding cassette transporter A1 (ABCA1) resulting in formation of pre-β 

high-density lipoprotein (HDL) particles. Then, pre-β HDLs interact with lecithin:cholesterol 

acyltransferase (LCAT), an enzyme responsible for cholesterol esterification, leading to formation 

of larger mature HDLs. Mature HDLs can either deliver esterified cholesterol (EC) cargo directly 

to the liver for elimination through scavenger receptor class B type I (SR-BI) or transfer EC to LDL 

by interaction with cholesterol ester transfer protein (CETP) for the elimination by the liver 

following LDL receptor-mediated uptake.  

The idea of using reconstituted (rHDL) or synthetic (sHDL) HDL for the treatment of 

cardiovascular disease has been prominent in the past 20 years, with several therapies reaching 

clinical trials (Nissen et al., 2003; Tardif et al., 2007; Tricoci et al., 2015; Duffy, 2018). While some 

clinical trials for rHDL products were successful (Nissen et al., 2003; Tardif et al., 2007; Duffy, 

2018), others failed (Andrews et al., 2017; Nicholls et al., 2018). A 17,400-patient Phase 3 trial 

(AEGIS-II) is currently ongoing for CSL-112 to show possible reduction of major adverse 

cardiovascular events in subjects with acute coronary syndrome (Duffy, 2018). The two most 

advanced sHDL products, CSL-112 and CER-001, both contain ApoA-I but differ in their lipid 

composition. CSL-112 is prepared from unsaturated soybean phosphatidylcholine while CER-001 

is composed of primarily saturated sphingomyelin (Andrews et al., 2017). Recently, we have 

shown that the type of phospholipid used in sHDL preparation is critical for its anti-inflammatory 

and anti-atherosclerotic properties (Schwendeman et al., 2015). Several other studies had 

examined the effects of phospholipid composition on the ability of sHDL to efflux cholesterol and 

interact with LCAT in vitro (Davidson et al., 1995; Bolin and Jonas, 1996; Sparks et al., 1998), yet 
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the impact of phospholipid chain length and saturation on sHDL pharmacodynamics in vivo has 

not been systematically examined.  

In contrast, significant body of research had been performed to develop short peptides 

(2F (18A), D-4F, L-4F, 5A, 22A, and ATI-5261) as cost-efficient, safe and easily scalable 

alternatives to a full-length ApoA-I (Dasseux et al., 1999; Remaley et al., 2001; Miles et al., 2004; 

Navab, GM Anantharamaiah, et al., 2005; Navab, GMM Anantharamaiah, et al., 2005; Sethi et 

al., 2008; Wool et al., 2008; Vecoli et al., 2011). These ApoA-I mimetic peptides have been 

optimized with the goal to improve several properties such as ABCA1 mediated cholesterol efflux, 

ability to activate LCAT and facilitate cholesterol esterification, enhance anti-oxidant properties, 

improve chemical stability and reduce hemolytic side-effects (Dasseux et al., 1999; Amar et al., 

2010; Bielicki et al., 2010; Li et al., 2015). Most ApoA-I mimetics were optimized as “naked” or 

lipid-free peptides in vitro and in vivo and only a few studies examined the pharmacological activity 

of peptide-based sHDL (Amar et al., 2010; Tang et al., 2017). 

Thus, we decided to systematically evaluate the effect of both peptide sequence and 

phospholipid composition of sHDL on nanoparticle’s ability to mobilize and esterify cholesterol in 

vitro and in vivo. For our studies, we used the first ApoA-I mimetic peptide (22A) that reached 

clinical trials as part of the sHDL product called ETC-642 (Khan et al., 2003; Miles et al., 2004). 

ETC-642 contained 22A ApoA-I mimetic peptide, which was optimized for its ability to bind 

phospholipids and activate LCAT (Dasseux et al., 1999; Di Bartolo et al., 2011). While ETC-642 

successfully completed single and multiple dose trials in dyslipidemia patients, it was recently 

discovered by us that 22A peptide undergoes rapid hydrolysis in plasma to form the 21A peptide, 

which lacks the C-terminal lysine, a residue potentially important for LCAT activation (Navab et 

al., 2006; Tang et al., 2017). We hypothesized that the addition of a proline moiety after the labile 

lysine (22A-P) would be able to protect 22A from proteolysis and result in longer circulation time 

while retaining LCAT activity in vivo. Thus, we prepared a set of sHDL particles using 22A, 21A, 

and 22A-P peptides while keeping lipid composition constant. 
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The second set of sHDL was prepared by varying only the phospholipid component and 

keeping the peptide component, 22A, constant. We used phospholipids with different chain length 

and saturation including 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-

dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine 

(DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) known for their differences in 

cholesterol binding affinity and LCAT interaction (Assmann et al., 1978; Subbaiah et al., 1992; 

Ramstedt and Slotte, 1999). Phospholipids with longer, saturated fatty acid chains such as DPPC 

and DSPC have higher affinity for cholesterol binding and higher physical stability due to their 

high transition temperatures (Tm) of 41°C and 55°C, respectively (Small, 1986; Ramstedt and 

Slotte, 1999; Ohvo-Rekilä et al., 2002). In contrast, unsaturated phospholipids like POPC (Tm= -

2°C) and those with shorter fatty acid chains like DMPC (Tm = 23°C) form fluid bilayers at 

physiological temperature facilitating LCAT-sHDL binding. The unsaturated fatty acids are 

superior substrates for LCAT esterification activity (Assmann et al., 1978; Parks and Gebre, 

1997). By comparing two sets of sHDL with varying peptide and lipid components side by side, 

we expected to be able to elucidate the relative contribution of both components to cholesterol 

efflux and engagement of LCAT in vitro as well as the overall pharmacokinetic and 

pharmacodynamic behavior of sHDL in vivo.  
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Materials and Methods 

Materials 

22A (PVLDLFRELLNELLEALKQKLK), 21A (PVLDLFRELLNELLEALKQKL), and 22AP 

(PVLDLFRELLNELLEALKQKLKP) were synthesized by Genscript (Piscataway, NJ), using solid-

phase Fmoc (9-fluorenylmethyl carbamate) protection chemistry and purified with reverse phase 

chromatography (>95% pure). 5A peptide (DWLKAFYDKVAEKLKEAF-P-

DWAKAAYDKAAEKAKEAA) was obtained from Bachem Americas Inc (Torrance, CA). 

Phospholipids including 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-

sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), and 

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were purchased from NOF America 

Corporation. Ergosta-5,7,9(11), 22-tetraen-3β-ol (dehydroergosterol, DHE), cholesterol oxidase 

was obtained from Sigma-Aldrich (St. Louis, MO). Cholesterol (1,2-3H(N)] was purchased from 

Perkin Elmer. Anti-human ApoA-I horseradish peroxidase-conjugated (HRP) antibody (1:1000 

dilution) was purchased from Meridian Life Science (Memphis, TN). Recombinant human lecithin 

cholesterol acyl transferase (LCAT) was kindly provided by MedImmune (Gaithersburg, MD). All 

other materials were obtained from commercial sources. 

 

Preparation and characterization of synthetic high-density lipoproteins 

sHDL composed of a peptide (22A, 21A, or 22A-P) and phospholipid (DMPC, POPC, 

DPPC, or DSPC) were prepared by a co-lyophilization procedure (Schwendeman et al., 2015). 

Briefly, peptide and phospholipids were dissolved in glacial acetic acid, mixed at 1:2 w/w ratio of 

peptide:lipid, and lyophilized overnight. The powder was hydrated with PBS pH 7.4 to make 10 

mg/mL sHDL and cycled between 55°C (10 min) and room temperature (10 min) to facilitate sHDL 

formation. The resulting sHDL complexes were analyzed by gel permeation chromatography for 

purity at 1 mg/mL using a 7.8 mm x 30 cm Tosoh TSK gel G3000SWxl column (Tosoh Bioscience, 

King of Prussia, PA) with UV detection at 220 nm. The HDL hydrodynamic diameters were 
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determined by dynamic light scattering (DLS) using a Zetasizer Nano ZSP, Malvern Instruments 

(Westborough, MA). The volume intensity average values were reported. The α-helical content of 

free and lipid-bound peptide was determined by Jasco J715 (Jasco, Easton, MD) circular 

dichroism (CD) spectropolarimeter. Samples at 0.1 mg/mL concentration in 10 mM phosphate 

buffer (pH 7.4) or buffer alone were loaded into a quartz cuvette (d = 0.2-cm path length), and CD 

spectra from 190 to 260 nm were recorded at 37°C. Buffer spectra were subtracted from each 

peptide or sHDL sample. Data analysis was conducted using CDPro analysis software and the 

percent helical content for each sample was calculated via CONTIN analysis method with the 

reference Soluble–Membrane Protein 56 Data Base (Sreerama and Woody, 2000).  

 

Generation of helical wheel peptide models and calculation of lipid binding parameters 

Helical wheel plots of 22A, 21A, and 22A-P peptides were created by Helixator 

(http://tcdb.org/progs/helical_wheel.php). This program displayed a peptide sequence looking 

down the axis of the alpha helix with aliphatic residues shown as blue circles. The hydrophobic 

momentum of 22A, 21A, and 22A-P peptides was calculated using the 3D Hydrophobic Moment 

Vector Calculator (http://www.ibg.kit.edu/HM/) (Reißer et al., 2014). The helix stability (ΔGhel), 

transfer energy from water to membrane (ΔGtrans), and parameters of spatial positions in 

membranes (tilt angle and membrane penetration depth) for each ApoA-I-mimetic peptide were 

calculated by the Folding of Membrane-Associated Peptide (FMAP) server (Lomize et al., 2017) 

and the Positioning of Proteins in Membranes (PPM) server (Lomize et al., 2012).  

 

Cholesterol efflux assay in vitro 

Cholesterol efflux studies were performed, as described by Remaley et al. (Remaley et 

al., 2003). Briefly, RAW 264.7, BHK-Mock and BHK stably transfected with human ABCA1 cDNA 

cell lines were labeled for 24 h with 1 µCi/mL of [3H] cholesterol in minimum Dulbecco’s modified 

Eagle’s medium (DMEM), containing 0.2 mg/ml of fatty acid-free bovine serum albumin (BSA). 
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Then, BHK-MOCK and BHK-ABCA1 cell lines were treated with 10 nM mifepristone for 18 h to 

selectively induce the expression of ABCA1 cholesterol transporter for BHK-ABCA1. ABCA1 

transporter was not selectively induced in RAW 264.7 cell line. Following the radiolabeling or 

induction step, peptides (22A, 21A or 22A-P) or sHDL (21A-DMPC, 22A-P-DMPC, 22A-DMPC, 

22A-POPC, 22A-DPPC or 22A-DSPC) were added at 0.01, 0.03 and 0.1 mg/mL concentration 

using DMEM-BSA media. After 18 h of incubation with cholesterol acceptors, media were 

collected and cells were lysed in 0.5 ml of 0.1% SDS and 0.1 N NaOH for 2 h. Radioactive counts 

in media and cell fractions were measured by liquid scintillation counting (Tri-Carb 2910 TR, 

PerkinElmer), and percent cholesterol efflux was calculated by dividing media counts by the sum 

of media and cell counts.  

 

Phospholipid lipolysis by LCAT 

The rate of phospholipid (POPC, DMPC, DPPC or DSPC) lipolysis was evaluated by 

incubating 15 g/mL of rhLCAT with 0.1 mg/mL of sHDL (based on total lipid concentration) in 0.1 

M sodium phosphate buffer pH 7.4 for 0, 5, 15, 30, 60, 90, and 120 min. The LCAT-sHDL reaction 

aliquots were collected into methanol (1:5 v/v) and vortexed to stop the lipolysis reaction at each 

time point. The amount of POPC, DMPC, DPPC or DSPC remaining at each time point was 

measured by Waters UPLC-MS equipped with QDa Mass Detector (Milford, MA). 

Chromatographic separation was achieved on Acquity BEH300 1.7 m HILIC 2.1 x 50 mm column 

with gradient elution at 0.65 mL/min: mobile phase A (H2O/0.1% formic acid), mobile phase B 

(acetonitrile/0.1% formic acid) and mobile phase C (100 mM ammonium formate) as follows: 0-

0.7 min (5-17% A, 90-78% B, and 5-5% C), 0.7-0.71 min (17-5% A, 78-90% B, and 5-5% C), and 

0.71-3 min (17-5% A, 78-90% B, and 5-5% C). Mass spectra were acquired in the positive ion 

mode with the mass range set at m/z 150-1250 and POPC was detected at 760.7 amu, DMPC at 

678.7 amu, DPPC at 734.7 amu, and DSPC at 790.7 amu. Data analysis was performed with 
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Waters Empower software. The plot of POPC, DMPC, DPPC or DSPC area under the curve over 

time was generated for each sHDL sample. The rate of LCAT lipolysis (k) was calculated from 

the linear slope of the log10 (concentration) versus time.  

 

Cholesterol esterification by LCAT assay 

Two different sets of sHDL containing dehydroergosterol (DHE) was prepared via the thin-

film method. Briefly, the first set was made from POPC, DPPC and DHE combined at a 4.5:4.5:1 

molar ratio in chloroform and then mixed with peptide (22A, 21A or 22A-P) at 2:1 lipid:peptide 

weight ratio in methanol/water (4:3 v/v). The second set was prepared from POPC, DMPC, DPPC 

or DSPC and DHE at a 9:1 molar ratio then mixed with 22A peptide at 2:1 lipid:peptide weight 

ratio in methanol/water (4:3 v/v). The solvent was removed under nitrogen flow at room 

temperature and then in a vacuum oven overnight. The lipid film was hydrated with 20 mM 

phosphate buffer containing 1mM EDTA (pH 7.4) followed by 5 min water bath sonication at room 

temperature and probe sonication (2 min × 50 w) to obtain clear DHE-sHDL. The final DHE 

concentration in peptide-DHE-sHDL was 0.5 mM. The LCAT assay was adapted from Homan et 

al. (Homan et al., 2013) and performed in 384-well black polystyrene plates in triplicate. Briefly, 8 

μL of different concentrations (0, 5, 10, 20, 40, 60, and 100 μM) of DHE-sHDL (substrates) in 

assay buffer (PBS containing 1 mM EDTA, 5 mM β-mercaptoethanol, and 60 µM albumin, pH 7.4) 

preheated to 37°C were incubated with 8 μL of 5 μg/mL LCAT in dilution buffer (PBS with 1 mM 

EDTA and 60 µM albumin, pH 7.4) preheated to 37°C in triplicates. The plates were incubated at 

37°C with gentle shaking (80 rpm/min) for different lengths of time (0, 10, and 20 min). Reactions 

were stopped by adding 4 μL of stop solution (3.75 U/mL cholesterol oxidase) in PBS containing 

1mM EDTA and 7% Triton X-100. Then, the plates were incubated at 37°C with shaking (80 

rpm/min) for another 1 h to quench the fluorescence of unesterified DHE. The fluorescence was 

measured at an excitation wavelength of 325 nm and an emission wavelength of 425 nm using 

the plate-reader (SynergyTM NEO HTS Multi-Mode Microplate Reader, Bio-Tek). A standard 
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curve was made by plotting the fluorescence of serially diluted DHE-containing sHDL mixed with 

LCAT and using stop solution without COx versus the concentration (μM) of DHE. To calculate 

the concentration (μM) of DHE ester for each reaction, the background fluorescence (0 μM of 

DHE) was subtracted from all fluorescence measurements and then divided by the slope 

(fluorescence/μM) of the above standard curve. To calculate Vmax and Km, the concentrations (μM) 

of DHE ester at different time points were plotted against time (h), and the initial velocity (V0, μM 

DHE-ester/h) was the slope of the linear range of DHE-ester concentration versus time. The Vmax 

and Km were obtained by plotting V0 versus DHE concentration and then analyzed by GraphPad 

Prism 7 (nonlinear regression, Michaelis-Menten model). 

 

Plasma peptide stability 

The in vitro stability of 22A, 21A, and 22A-P peptides was assessed by the addition of 2.5 

µL of 10 mg/mL of a peptide to 97.5 µL of fresh rat plasma (K2 EDTA, Innovative Research Inc). 

Immediately after the addition of peptide to plasma, 10 µL of serum was removed to serve as a 

baseline and stored at -20 C. Samples were incubated at 37°C for 24 hours with shaking at 240 

rpm. To determine peptide concentration at 0 and 24 h post plasma incubation, 10 µL of plasma 

containing a peptide or working standard (0-100 µg/mL) was mixed with 2 µL of 2.4 mg/mL internal 

standard (5A peptide) and 38 µL of H2O. Methanol (200 µL) was added to precipitate plasma 

proteins. The mixture was vortexed for 10 s, centrifuged at 12,000 rpm for 10 min and the 

supernatant was collected for LC-MS analysis. Samples were mixed (1:1 v/v) with LC-MS mobile 

phase (80:20 v/v H2O:acetonitrile, 0.1% formic acid) and analyzed on Waters Acquity UPLC 

equipped with QDa System (Milford, MA) using Acquity UPLC BEH C18 1.7 μM column for 

separation. The mobile phase consisted of (A) water containing 0.1% v/v formic acid and (B) 

methanol containing 0.1% v/v formic acid. The mobile phase was delivered at 0.3 mL/min using 

a gradient elution of 20% to 80% B during 0-1.5 min, and 80% to 20% B during 1.5-3.5 min. Mass 

spectra were acquired in the positive ion mode with the mass range set at m/z 150-1250. Data 
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analysis was performed on Waters Empower software. The concentration of 22A, 21A or 22A-P 

peptide in each sample was determined from the standard curve.  

 

Peptide pharmacokinetics, cholesterol mobilization, and esterification in vivo 

Healthy male Sprague-Dawley rats (8 weeks old) were purchased from Charles River 

Breeding Laboratories (Portage, MI) and were fed a standard rodent chow diet. To examine the 

impact of peptide composition on sHDL PK/PD properties, animals were randomly assigned to 

two groups (n = 4/group) for 22A-POPC/DPPC and 22A-P- POPC/DPPC administration. To 

examine the impact of lipid composition on sHDL PK/PD, animals were randomly assigned to four 

groups (n = 3/group) for 22A-POPC, 22A-DMPC, 22A-DPPC, and 22A-DSPC administration. All 

sHDL particle was prepared at 1:2 w/w peptide to phospholipid ratios, sterile filtered and 

characterized by DLS and gel permeation chromatography for size and purity prior to animal 

dosing. All animals were fasted overnight before sHDL dosing at 50 mg/kg (based on peptide 

concentration) via tail vein injection. At each time point (pre-dose, 0.25, 0.5, 1, 2, 4, 8, and 24 h) 

blood samples (~0.3 mL) were collected from the jugular vein to heparinized BD tubes (Franklin 

Lakes, NJ) and centrifuged at 10,000 rpm for 10 min at 4C. The obtained serum samples were 

stored at -20C for further analysis.  

The levels of plasma phospholipids (PL), total cholesterol (TC) and free cholesterol (FC) 

were determined enzymatically (Wako Chemicals, Richmond, VA) using a plate reader 

(SynergyTM NEO HTS Multi-Mode Microplate Reader, Bio-Tek). Esterified cholesterol levels (EC) 

were calculated as the difference between TC and FC levels at each time point. Briefly, serum 

samples were diluted with PBS for TC and FC detection, or with MilliQ water for PL detection. 

Defined amounts of standards or diluted samples were transferred to 96-well plates (50 μL, 60 μL 

and 20 μL for TC, FC and PL analyses, respectively), and assay reagents were added per 

manufacturer’s instructions. The plates were gently shaken using an orbital shaker and incubated 
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at 37˚C for 5 minutes. The UV absorbance at 600 nm was measured by a Molecular Devices 

SpectraMax M3 plate reader (Sunnyvale, CA). Pharmacokinetic parameters were also obtained 

by non-compartmental analysis. The pharmacodynamic effect in each rat was determined as the 

area under the total effect curve (AUEC) using trapezoidal rule. Secondary pharmacodynamic 

endpoints, maximal effect (Emax) and time to Emax (Tmax,E) were also analyzed to compare 

pharmacodynamic effects. 

Peptide (22A or 22A-P) concentration in serum was determined by LC-MS. The 10 µL 

serum aliquots were combined with 10 µL of 2.4 mg/mL of internal standard (5A peptide) and then 

mixed with 40 µL ddH2O. Working standard solutions (0-100 µg/mL) of 22A and 22A-P were 

prepared as described above for plasma samples with the exception of using blank rat serum. 

Plasma proteins were precipitated by adding 180 μL of methanol. After 5 minutes, the mixture 

was centrifuged (12000 rpm × 10 min, 4°C) and 100 µL of the supernatant was used for analysis. 

Each sample was analyzed by LC-MS as described above in the plasma peptide stability section. 

Pharmacokinetic parameters such as maximum serum concentration (Cmax), the area under the 

serum concentration-time curve (AUC), elimination rate constant (K), elimination half-life (T1/2), 

total clearance (CL), and volume of distribution (Vd) were obtained by non-compartmental 

analysis. 

 

Remodeling of endogenous lipoproteins by sHDL in human plasma 

Remodeling of endogenous lipoproteins in human plasma by sHDL was assessed by one-

dimensional native polyacrylamide gel electrophoresis (1-D native PAGE) following sHDL 

incubation in plasma. Various sHDL (22A-POPC, 22A-DMPC, 22A-DPPC, 22A-DSPC, 21A-

sHDL, 22A-sHDL, and 22A-P-sHDL) at 1 mg/mL concentration were incubated at 37°C for 1 h 

with shaking at 300 rpm. The sub-classes of HDL were separated by size using 1-D native PAGE 

and visualized by Western Blot using the anti-ApoA-I antibody. Briefly, samples were subjected 

to electrophoresis using Tris-borate-EDTA (TBE) gradient (4 – 20%) acrylamide mini-gels. For 
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each well, 10 μL of human plasma incubated with or without sHDL was mixed with 10 μL of 2X 

TBE sample buffer, and 6 μL of the resulting mixtures were loaded per well. Gels were run at 

200V. Proteins were transferred to polyvinylidene difluoride membrane (PVDF) and incubated 

overnight with the anti-human ApoA-I-HRP conjugated antibody. Proteins were visualized with 

the enhanced chemiluminescent substrate on Protein Simple FluorChem M imaging system (San 

Jose, CA). 

 

Statistical analysis 

Significance of difference was determined by Student’s t-test for comparing two groups or 

by one-way analysis of variance (ANOVA) with Dunnett’s post-hoc test for comparing multiple 

groups with 22A peptide or 22A-DMPC as the control. All samples were performed in triplicate 

and error bars were reported as a standard mean error (SEM) unless noted otherwise. P < 0.05 

was considered statistically significant.  
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Results 

Design of ApoA-I peptides with improved plasma stability 

Helical wheel plots for 22A, 22A-P, and 21A were generated to assess the amphipathic 

nature of each peptide. The hydrophobic amino acids clustered on one side of the helix suggested 

an amphipathic orientation of each peptide (Table 1). The 3D hydrophobic moment vector 

calculations were performed to predict and compare the interactions of each peptide with lipid 

membranes. It was determined that the hydrophobic moment vectors were almost identical with 

an average of 10.3  0.7 A*kT/e. Additionally, we used an online server to determine the helix 

stability (Ghel), transfer energy from water to membrane (Gtrans), and orientation of each peptide 

in the membrane (penetration depth, D). Again, we did not find large differences in any of the 

aforementioned parameters, suggesting that the absence of the terminal lysine in 21A or the 

addition of proline in 22A-P did not change the physical properties of these peptides compared to 

22A. Next, we compared the plasma stability of 22A, 22A-P, and 21A as well as their abilities to 

bind lipid and form sHDL particles. We found that while 22A degrades in plasma with only 48% of 

intact peptide remaining after 24 h incubation at 37°C, both 22A-P and 21A are significantly more 

stable with 89 and 97% of intact peptide remaining, respectively. These results suggest that the 

plasma stability of 22A peptide can be greatly improved by the addition of a bulky proline, while 

computed lipid binding properties remained relatively unchanged.  

 

Preparation and characterization of sHDL particles 

We next evaluated the ability of 21A, 22A, and 22A-P peptide to form homogeneous sHDL 

particles. Synthetic HDL particles were prepared by combining 22A, 21A or 22A-P peptide with 

DMPC at 1:2 w/w peptide:lipid ratio, which was previously used in ETC-642 formulation resulting 

in the formation of homogeneous sHDL particles with approximately 10 nm size (Li et al., 2015; 

Tang et al., 2017). All three peptides formed homogeneous sHDL particles with average 
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diameters of approximately 10 nm and a narrow polydispersity index of 0.17 ± 0.04 as determined 

by DLS (Fig. 1A). Purity and homogeneity of sHDL size distribution were evaluated by gel 

permeation chromatography (Fig. 1B). All three sHDL were over 98% pure, and negligible levels 

of the free peptide (<2%) were observed at the retention time of ~11 min (Supplemental Table 

1). The binding of a peptide to phospholipid was also confirmed by increased helicity of 22A, 21A 

and 22A-P in sHDL particles (94, 91 and 82%) relative to the free peptide (77, 79 and 77%) as 

measured by CD. 

We also altered the phospholipid composition of 22A sHDL to study its impact in vitro and 

in vivo. We chose four lipids with different physical properties such as transition temperature (Tm) 

and affinity for cholesterol (DSPC>DPPC>DMPC>POPC) (Small, 1986; Ramstedt and Slotte, 

1999; Ohvo-Rekilä et al., 2002). The sHDL complexes were formed by combining 22A peptide 

with individual lipids at 1:2 w/w ratio using the co-lyophilization method. All were highly 

homogeneous with an average hydrodynamic diameter ranging between 8.3 to 10.5 nm, low 

polydispersity index and gel permeation chromatography purity greater than 95% (Fig. 1C-D). 

The purity, size, and polydispersity levels of sHDL are summarized in Supplemental Table 1. 

The DMPC, DPPC and DSPC-based sHDL had smaller hydrodynamic diameters, higher GPC 

purities, and sharper GPC peaks relative to 22A-POPC. The presence of free peptide (<1%, 

retention time ~11.3 min) and liposome impurities (<2%, retention time ~5.5 min) were observed 

for 22A-POPC, which also had the largest average particle size and broadest size distribution. 

Because POPC has the lowest Tm of -2 °C, it exists in a fluid gel state at room temperature, which 

likely impacts 22A-POPC stability.  

 

Lipid composition of sHDL impacts macrophage cholesterol efflux  

We next examined how the C-terminal modifications in 22A-P and 21A impact cholesterol 

efflux abilities relative to 22A, either as free peptides or reconstituted into sHDL. Radioactive 

cholesterol was loaded into BHK cell line stably transfected with human ABCA1 transporter and 
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peptides were incubated with the cells at 0, 0.01, 0.03, and 0.1 mg/mL. The same experiment 

was repeated using the control BHK-Mock cell line to assess cholesterol efflux by passive 

diffusion. Then, the non-specific cholesterol efflux values were subtracted from the data obtained 

for each peptide with ABCA1 transfected cells to reveal receptor specific cholesterol efflux (Fig. 

2A). All three peptides exhibited concentration-depended cholesterol efflux with only minor 

differences (< 5%) observed, indicating that modifications at the C terminal end of 22A did not 

affect lipid binding and ABCA1 transporter interaction. Then, the three peptide sequences were 

assembled into sHDL and their abilities to efflux cholesterol from macrophages were examined in 

RAW 264.7 cell line (Fig. 2B). Similar to free peptide, we observed concentration-dependent 

cholesterol efflux with only minor differences (< 5%) at concentrations tested. 

To explore the impact of the phospholipid component of sHDL on macrophage cholesterol 

efflux, 22A-POPC, 22A-DMPC, 22A-DPPC, and 22-DSPC were incubated with RAW 264.7 cells. 

Saturated long chain length phospholipids such as DPPC and DSPC have higher physical binding 

affinity to cholesterol relative to POPC and DMPC (Ramstedt and Slotte, 1999; Ohvo-Rekilä et 

al., 2002). However, the transition temperature of POPC and DMPC is below 37°C, thus the 

phospholipid bilayer is in liquid crystal state at physiological temperature facilitating cholesterol 

partitioning in these sHDL particles at the cell culture conditions (Davidson et al., 1995). As 

expected, we observed greater cholesterol efflux to POPC and DMPC-based sHDL relative to 

DPPC and DSPC-based sHDL likely due to differences in lipid fluidity at 37°C (Fig. 2C). Whereas 

22A-DPPC and 22A-DSPC did not have any significant differences in cholesterol efflux as 

concentration increased, 22A-POPC and 22A-DMPC show sHDL concentration-dependent 

increase in cholesterol efflux. Interestingly, 22A-DMPC showed the most effective cholesterol 

efflux capability from as low as 36% at 0.01 mg/mL to as high as 61.8% at 0.1 mg/mL 

concentration. Membrane transporters such as ABCG1/G4 and SR-BI are known to play a major 

role in cholesterol efflux to HDL rather than lipid-free protein and may contribute to the differences 

seen between sHDL in our study (Krieger, 1999; Wang et al., 2004). Taken together, the 
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phospholipid composition of sHDL appears to play a significant role in cholesterol efflux from 

macrophages in cell culture. 

 

Peptide and lipid composition both impact sHDL interaction with LCAT  

Following cholesterol efflux from macrophages, sHDL particles interact in plasma with 

LCAT (Asztalos et al., 2007). It is expected that both lipid and peptide composition of sHDL will 

have an effect on LCAT interaction. The fluidity of HDL lipid membrane determines the ease of 

LCAT binding to HDL particles (Soutar et al., 1975). It has been shown that LCAT interaction with 

ApoA-I is critical for LCAT activation, especially for the facilitation of acyltransferase activity 

(Sorci-Thomas et al., 1993). Whereas some ApoA-I mimetic peptides have similar LCAT 

activation ability to full-length ApoA-I, others fail to facilitate EC formation (Anantharamaiah et al., 

1990; Dasseux et al., 1999; Datta et al., 2001). The presence of positively charged clusters on 

the C-terminus and presence of hydrophobic amino acids at positions 3, 6, 9 and 10, and net 

peptide charge of zero are believed to be critical to the high LCAT activation ability of 22A 

(Dasseux et al., 1999, 2004). To examine how modification of 22A and lipid composition of sHDL 

impact phospholipase A2 activity of LCAT, sHDL were co-incubated with enzyme and the kinetics 

of reduction of phospholipid concentration was monitored by LC-MS. We found that small 

changes in 22A sequence had only limited impact on phospholipase A2 activity (lipolysis) activity 

(Fig. 3A), indicating that LCAT activation by a C-terminal positive cluster on the peptide might not 

be critical for lipase activity. In contrast, the sHDL lipid composition had profound effect on LCAT-

catalyzed phospholipid lipolysis with the rates of 0.08, 0.08, 0.01, and 0.0 h-1 for 22A-POPC, 22A-

DMPC, 2A-DPPC and 22A-DSPC, respectively. DSPC and DPPC, phospholipids with Tm values 

above 37°C, had minimal lipolysis likely due to poor LCAT binding to sHDL and, thus, presumably 

difficulty in the accessibility of substrate for the enzymatic reaction.  

Next, we assessed the impact of peptide and lipid composition of sHDL on LCAT 

acyltransferase activity by incorporating a fluorescent cholesterol analog called dehydroergosterol 
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and measuring the rate of sterol esterification by LCAT. Changes in C-terminus of 22A peptide 

had a significant effect on the acyltransferase activity with a 2.6-fold decrease in kcat upon the loss 

of lysine for 21A (Fig. 3C). The rate was only decreased by 30% for 22A-P-HDL. When 22A-sHDL 

was complexed with different compositions of phospholipids, acyltransferase activity of LCAT was 

the highest for 22A-POPC sHDL (Fig. 3D). Sterol esterification was only limited for 22A-DMPC 

sHDL, while no activity was detected for 22A-DPPC and 22A-DSPC. This trend was similar to the 

differences in phospholipase A2 activity observed for sHDL prepared with different lipids (POPC 

≥ DMPC > DPPC > DSPC), following their general trends in Tm and membrane fluidity. The 

Michaelis-Menten parameter estimates for the LCAT assay and goodness of fit are provided in 

Supplemental Table 2. The assay has significant run-to-run variability, however, the samples 

analyzed within a single experiment (either in Fig. 3C or 3D) can be compared between each 

other. 

 

Increase in peptide plasma half-life has no impact on cholesterol mobilization in vivo 

To evaluate whether in vitro peptide stability data correlates with in vivo peptide 

pharmacokinetics and cholesterol mobilization, we injected healthy Sprague Dawley rats with 

22A-POPC-DPPC or 22A-P-POPC-DPPC sHDL at 50 mg/kg based on peptide concentration in 

sHDL. Animal blood samples were collected before sHDL administration and at 0.25, 0.5, 1, 2, 4, 

8, and 24 h post-dose. The peptide concentrations in rat serum were determined using LC-MS 

(Fig. 4A). The noted stability of 22A-P when incubated with rat plasma translated well to in vivo 

settings with an increase in peptide circulation half-life and exposure (T1/2 = 4.2 h and AUC = 

1721.0 mg*h/dL) compared to 22A (T1/2 = 2.1 h and AUC = 554.0 mg*h/dL) (Table 2). We 

expected that these significant PK differences between two peptides would translate into 

increased cholesterol mobilization by sHDL in vivo. Additionally, we anticipated that levels of 

esterified cholesterol would be different between two formulations in vivo based on clear 

differences in LCAT-catalyzed esterification between 22A-sHDL and 22A-P-sHDL in vitro. 
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However, we saw no differences in cholesterol mobilization and esterification profiles between 

22A-sHDL and 22A-P-sHDL in vivo as quantified by enzymatic assay of rat serum samples (Fig. 

4C, D, Table 2). Finally, if sHDL particle stayed intact upon in vivo administration, we would expect 

to see longer circulation half-life for total phospholipids with 22A-P-sHDL relative to 22A-sHDL. 

To test this hypothesis, we determined phospholipid concentrations in plasma pre- and post-sHDL 

administration by an enzymatic assay. We observed no differences in phospholipid PK 

parameters between 22A-sHDL and 22A-P-sHDL except for T1/2 in which 22A-P-sHDL (1.3 h) 

showed significantly decreased T1/2 compared to 22A-sHDL (1.8 h) (Fig. 4B, Table 2). Altogether, 

these results suggest that the apparent differences in 22A-P and 22A stabilities in plasma and 

LCAT activation abilities had not resulted in measurable differences in cholesterol mobilization 

and esterification in vivo.  

 

Lipid composition of sHDL impacts cholesterol mobilization in vivo 

To investigate the contribution of phospholipid composition of sHDL on cholesterol 

mobilization and esterification profiles in vivo, we administered 22A-POPC, 22A-DMPC, 22A-

DPPC, and 22A-DSPC sHDL to healthy Sprague Dawley rats. Based on cholesterol efflux from 

RAW 264.7 cells and LCAT-catalyzed esterification results in vitro we were expecting to see 

higher cholesterol mobilization and esterification for POPC and DMPC-based sHDL in vivo. 

However, the results of in vivo administration of 50 mg/kg of sHDL were reversed with 22A-DSPC 

showed significantly higher free cholesterol mobilization to the plasma compartment represented 

by the area under the effect curve (AUEC) AUEC22A-DSPC = 536.4 mg*h/dL compared to three other 

sHDL formulations with lower AUEC22A-POPC = 79.4 mg*h/dL, AUEC22A-DMPC = 126.5 mg*h/dL, and 

AUEC22A-DPPC = 215.0 mg*h/dL (Fig. 5, Table 3). Although the Cmax of plasma EC was higher for 

DMPC-based sHDL, DSPC-based sHDL administration resulted in higher EC concentration at 

later time points and 3.5-fold greater AUEC values relative to DMPC-based sHDL (Fig. 5D, Table 

3). The differences between in vitro and in vivo results could be attributed to differences in lipid 
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Tm affecting the in vivo circulation time. Our in vivo data supports this hypothesis where 

phospholipids with higher transition temperatures such as DSPC (Tm = 55°C) showed greater 

half-life and slower clearance than other phospholipids (Fig. 5B). Interestingly, the 22A peptide 

kinetics such as plasma half-life after administration of sHDL in rats did not follow phospholipid 

kinetics similar to the differences in PK parameters between lipid and peptide obtained with 22A- 

and 22A-P-sHDL. The half-life of 22A after 22A-DSPC infusion was nearly identical to 22A-DMPC, 

22A-POPC, and 22A-DPPC formulations (3.3 h, 3.0 h, 3.3 h, and 3.3 h, respectively) (Table 3). 

Taken together, these results suggest that the ability of sHDL to mobilize cholesterol is strongly 

dependent on phospholipid composition and pharmacokinetics.  

 

Remodeling of endogenous HDL in human plasma  

To assess how different compositions of sHDL facilitate the remodeling of endogenous 

lipoproteins, all sHDL particles were incubated with human plasma for 1 hour at 1 mg/mL peptide 

concentration. The HDL sub-fractions were separated by size using 1D native PAGE 

electrophoresis and visualized by Western Blot using anti-ApoA-I antibody (Fig. 6). We have 

confirmed that anti-ApoA-I antibody does not recognize 22A, 21A or 22A-P, thus, we examined 

the impact of sHDL incubation on the remodeling of endogenous ApoA-I containing proteins. 

Compared to human plasma control incubated with PBS, incubation of plasma with 22A-sHDL, 

21A-sHDL, and 22A-P-sHDL resulted in the remodeling of endogenous HDL indicated by a 

diminished signal for the large -HDL and increased levels of lipid-poor ApoA-I. The effect of the 

phospholipid composition of sHDL on endogenous HDL remodeling was more prominent. 

Incubation of plasma with 22A-POPC resulted in a shift of HDL size from large -HDL to smaller 

pre-β HDL. Incubation with 22A-DMPC showed the formation of even smaller pre-β HDL particles 

with a band of lipid-free ApoA-I. In contrast, plasma incubation with 22A-DSPC displayed very 

limited HDL remodeling, likely due to the rigidity of the DSPC lipid membrane and thus reduced 
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the insertion of endogenous ApoA-I. The 22A-DPPC incubation with plasma resulted in some 

reduction of -HDL levels and formation of a predominant band of lipid-free ApoA-I. Overall, the 

extent of HDL remodeling was significantly affected by the phospholipid composition of sHDL. 

The sHDL prepared with high Tm phospholipids (22A-DPPC and 22A-DSPC) exhibited higher 

plasma stability and less remodeling.   
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Discussion 

Our previous studies have shown that upon intravenous administration of sHDL, 22A 

peptide becomes rapidly hydrolyzed into 21A due to loss of terminal lysine (Tang et al., 2017). 

The addition of C-terminal proline after the labile lysine in 22A afforded a resistant to proteolysis 

peptide as shown by incubation of 22A-P with rat plasma. The new peptide was successfully 

formulated into sHDL and dosed into rats. We expected to see longer circulation time and 

corresponding greater in vivo cholesterol mobilization for 22A-P-sHDL. As predicted in vitro, the 

half-life of 22A-P in animals was extended from 2.1 to 4.2 hours and AUC for 22A-P is nearly 3-

fold higher. However, the longer circulation time of 22A-P in vivo did not translate into a higher 

cholesterol mobilization profile by 22A-P-sHDL compared to 22A-sHDL. Furthermore, the AUC of 

the phospholipid component of 22A-P-sHDL and 22A-sHDL were also not affected by the 

extension of the peptide half-life. When sHDL particles prepared with the same peptide 22A and 

different phospholipids (POPC, DMPC, DPPC, or DSPC) were administered to rats the peptide 

half-life was similar for all four formulations (3.2  0.1 h). However, the phospholipid half-life varied 

dramatically with DSPC circulating for 6.0 h compared to 1.0 - 3.3 h for other lipids. The trend of 

phospholipid circulation time for each sHDL formulation in animal serum was similar to that of 

cholesterol mobilization (22A-DSPC> 22A-DPPC, 22A-DMPC> 22A-POPC). Moreover, these 

findings are further supported by our HDL remodeling results, showing only limited interaction of 

22A-DSPC with endogenous HDL, which could extend circulation half-life. The limited interaction 

between sHDL and endogenous lipoproteins is likely due to the difficulty of protein insertion in the 

gel membrane of DSPC (Tm of 55 °C, above physiological temperature) as was observed in vitro 

for 22A-DSPC interaction with LCAT. Altogether, the data suggest that the pharmacokinetics of 

peptide and lipid components in sHDL are not interdependent and original infused sHDL particles 

may dissociate or become remodeled upon administration in vivo. In addition, the phospholipid 

rather than peptide component in sHDL has a major impact on the ability to mobilize cholesterol 

in vivo. However, it is important to note that the peptide sequence modifications performed by us 
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were rather minor. It has been shown that different sequences of ApoA-I mimetic peptides have 

measurable differences in cholesterol efflux in vitro and variable in vivo performance (Sethi et al., 

2008; Wool et al., 2008; Amar et al., 2010; Bielicki et al., 2010).  

Several other groups reported on the discordance between the PK of protein and 

phospholipid components of HDL in vivo. Xu et al. investigated the fate of ApoA-I protein and 

phospholipid after in vivo administration of HDL in an attempt to interrogate the validity of the 

reverse cholesterol transport pathway (Xu et al., 2017). The investigators used ABCA1-derived 

ApoA-I-HDL with radiolabeled components and reported that phospholipids and ApoA-I enter 

different pathways for clearance in mice. The authors suggested that after the administration of 

radiolabeled ApoA-I-HDL, phospholipids were rapidly cleared by the liver and also transferred to 

LDL while ApoA-I fused with endogenous HDL and circulated longer. CSL-112, the ApoA-I-

soybean phosphatidylcholine sHDL product undergoing phase III clinical trial, is believed to 

undergo remodeling in human plasma with the generation of lipid-poor ApoA-I that is important 

for cholesterol efflux (Didichenko et al., 2016). Another sHDL product in clinical development, 

CER-001, composed from ApoA-I and primarily sphingomyelin, have shown differences, 

specifically longer half-life for phospholipid (~46 h) relatively to ApoA-I (~10 h) (Keyserling et al., 

2011; Tardy et al., 2014). We also found that incorporation of polyethylene glycol-modified lipids 

in ApoA-I peptide-based sHDL extended circulation time for lipids and prolonged the duration of 

mobilized cholesterol circulation but had not altered ApoA-I peptide PK (Li et al., 2018). Therefore, 

peptide and lipid components of sHDL may both contribute to cholesterol mobilization, however 

not as intact nanoparticles, but rather as separate entities via different mechanisms. 

The phospholipid composition also impacted the ease of sHDL preparation, purity, and 

size of the resulting nanoparticles and their stability in vitro and in vivo. The sHDL prepared with 

DSPC, DPPC, and DMPC showed relatively similar narrow size distributions and high purities 

while sHDL prepared with POPC appeared to be more heterogeneous with larger average particle 

sizes and a presence of liposomal impurities. This relative difficulty of forming pure POPC-based 
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sHDL particles has been reported previously and was attributed to the fluidity and instability of 

the POPC membrane at room temperature, which was well above the phospholipid’s Tm (Patel et 

al., 2019). The sHDL prepared with saturated lipids appeared to be more homogeneous and pure 

but required heating particles above lipid Tm during preparation to facilitate ApoA-I peptide-lipid 

binding. In addition, the presence of unsaturated double bonds in lipids such as POPC could 

result in phospholipid oxidation, although this phenomenon was not investigated in this study.  

Interestingly, we also observed a discordance between in vitro and in vivo results for sHDL 

prepared with different phospholipids and peptides. The in vitro trends for higher cholesterol efflux 

and superior ability to activate LCAT for 22A-POPC and 22A-DMPC did not translate into higher 

cholesterol mobilization and esterification in vivo. The free cholesterol mobilization and circulation 

time appear to be closely following the circulation time of phospholipids, with the longer circulating 

saturated DSPC exhibiting higher Cmax for FC mobilization and AUEC. Thus, the ease of 

cholesterol incorporation in unsaturated 22A-POPC becomes of limited significance in vivo due 

to rapid elimination of POPC. The esterification seems to follow the same trend, as faster LCAT-

catalyzed lipolysis and sterol esterification did not translate to greater Cmax and AUEC for EC in 

vivo. However, it is important to point out that the actual rate of EC formation and LCAT activation 

in vivo was not directly measured in this study and will require additional experiments as described 

by Turner et al. (Turner et al., 2012). The stability of 22A-P is greatly improved in vivo relative to 

22A, however phospholipid PK appeared to be unchanged and cholesterol mobilization follows 

phospholipid PK. One of the explanations for this may be that both 22A and 22A-P are capable 

of forming sHDL in vitro and maintaining sHDL stability in vivo, as the structures of all three 

peptides used by us are very similar. It is also important to point out that other groups had seen 

discordance between showing some structure-activity relationship for ApoA-I peptides in vitro and 

seeing no statistical differences in their pharmacological effects in vivo (Ditiatkovski et al., 2017).  

Our data support the complexity of RCT and highlights that both ApoA-I protein/peptide 

and lipid components of sHDL contribute to the RCT pathway. The study also highlights that the 
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phospholipid composition of sHDL is the driving force for cholesterol mobilization in vivo and we 

plan to further examine if higher cholesterol mobilization for sHDL composed of saturated lipids 

will lead to greater anti-atherosclerosis effect in a murine model of the disease. 
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Legends for Figures 

 

Figure 1. Size distribution and purity of sHDL prepared with various peptide (A, B) and 

phospholipid (C, D) compositions. The size was determined by dynamic light scattering (DLS) (A, 

C) and purity was determined by gel permeation chromatography (GPC) (B, D). 

 

Figure 2. Effect of peptides and sHDL on cholesterol efflux. Free peptides (22A , 21A, 22A-P) 

were used to efflux cholesterol from BHK cells stably transfected with ABCA1 transporter (A) and 

sHDL (22A-DMPC, 21A-DMPC, 22A-P-DMPC and 22A-POPC, 22A-DMPC, 22A-DPPC, 22A-

DSPC) were utilized to efflux cholesterol from RAW 264.7 macrophage cells (B, C) at 0.01, 0.03, 

and 0.1 mg/mL for 18 hrs. The contribution of ABCA1 transporter was determined by subtracting 

efflux values of Mock-transfected cell line from ABCA1-transfected cell line (n=3, mean  SEM). 

Statistical differences were compared to 22A peptide or 22A-DMPC with one-way ANOVA 

analysis with Dunnett’s post-hoc test. P < 0.05 was considered statistically significant *P < 0.05, 

**P < 0.01, ***P < 0.001 

 

Figure 3. Effect of peptide and phospholipid composition in sHDL on LCAT lipolysis and 

esterification rates. (A, B) The rate of sHDL lipolysis was determined by incubating sHDL (0.1 

mg/mL) prepared with variable peptide composition (22A-DMPC, 21A-DMPC, 22A-P-DMPC) or 

variable phospholipid composition (22A-POPC, 22A-DMPC, 22A-DPPC, 22A-DSPC) with human 

rhLCAT (15 g/mL) at 37 C for 0, 5, 15, 30, 60, 90, and 120 min. The concentration of 

phospholipid at each time point was determined by LC-MS and the rate of lipolysis calculated 

from the slope of the concentration of the starting material versus time. LCAT esterification activity 

was measured for sHDL containing fluorescent cholesterol analog, dehydroergosterol (DHE) (C, 

D). The initial reaction rates (V0) are plotted as a function of DHE concentration and the data were 
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fitted into the Michaelis-Menten kinetic equation to calculate Vmax and Km (n=3, mean  SEM). 

Statistical differences were compared to 22A peptide or 22A-DMPC with one-way ANOVA 

analysis with Dunnett’s post-hoc test. P < 0.05 was considered statistically significant *P < 0.05, 

**P < 0.01, ***P < 0.001 

 

Figure 4. Pharmacokinetic analysis of 22A and 22A-P peptides (A) or total phospholipids (B) in 

rat serum. Pharmacodynamic assessment of free cholesterol (C) and esterified cholesterol (D) 

mobilization in rat serum. Healthy male Sprague-Dawley rats were given a single tail vein injection 

of 50 mg/kg (based on peptide) of 22A-POPC-DPPC or 22A-P-POPC-DPPC and blood samples 

were collected at pre-dose and 0.25, 0.5, 1, 2, 4, 8, and 24 h after sHDL administration. Serum 

concentrations of peptides were determined by LC-MS while concentrations of phospholipids, free 

cholesterol, and esterified cholesterol were measured enzymatically (n=3). Statistical difference 

was compared with two-tailed Student’s t-test. P < 0.05 was considered statistically significant *P 

< 0.05, **P < 0.01, ***P < 0.001 

 

Figure 5. Pharmacokinetic analysis of 22A (A) and total phospholipids (B) in rat serum. 

Pharmacodynamic assessment of free cholesterol (C) and esterified cholesterol (D) mobilization 

in rat serum. Healthy male Sprague-Dawley rats were given a single tail vein injection of 50 mg/kg 

(based on peptide) of 22A-POPC, 22A-DMPC, 22A-DPPC, or 22A-DSPC and blood samples 

were collected at pre-dose and 0.25, 0.5, 1, 2, 4, 8, and 24 h after sHDL administration. Serum 

concentrations of peptides were determined by LC-MS while concentrations of phospholipids, free 

cholesterol, and esterified cholesterol were measured enzymatically (n=3). Statistical differences 

for 22A-phospholipid were compared to 22A-DMPC with one-way ANOVA analysis with Dunnett’s 

post-hoc test. P < 0.05 was considered statistically significant. P < 0.05, **P < 0.01, ***P < 0.001 
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Figure 6. Effect of sHDL incubation with human plasma on endogenous HDL remodeling. Various 

compositions of sHDL were incubated in human plasma at 1 mg/mL for 1 h at 37°C. Lipoproteins 

were separated by 1-D native page electrophoresis and visualized by western blot using anti-

apoA-I antibody.
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Tables 

 

 

Table 1. Biophysical characterization of peptides. aHelical wheel plots were generated using the 

online tool called Helixator where hydrophobic amino acids were highlighted in blue. bHydrophobic 

moments were calculated by the 3D Hydrophobic Moment Vector Calculator. cHelix stability 

(∆Ghel), transfer energy from water to membrane (∆Gtran), and tilt angle in membranes were 

predicted by FMAP server for 22A, 21A, and 22A-P peptide sequences; dHelical content of lipid-

free and lipid-bound peptides was determined by circular dichroism; ePeptide stability in rat 

plasma was determined by LC-MS shown as percent remaining peptide following 24 h incubation 

at 37°C (n=3, mean  standard deviation). 

  

Peptide name 22A 21A 22A-P 

Sequence 
PVLDLFRELLNELLEALK

QKLK 
PVLDLFRELLNELLEAL

KQKL 
PVLDLFRELLNELLEAL

KQKLKP 

Helical wheel 
plota 

 

 
  

 

 
  

 

 
  

Hydrophobic 
moment vector 

(A*kT/e)b 

11.1 10.0  9.9 

Ghel (kcal/mol)c -19.8 -19.4 -19.8 

Gtran (kcal/mol)c -14.7 -13.4 -14.7 

D (Å)c 11.8 ± 3.6 8.1 ± 4.6 11.8 ± 3.6 

Helical content of 
lipid-free peptide 

(%)d 
76.6 79.0 76.5 

Helical content of 
lipid-bound 
peptide (%)d 

93.9 90.9 81.6 

Peptide plasma 
stability (%)e 

48.4 ± 10.6 96.8 ± 5.4 89.3 ± 12.5 
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 Parameters 
Groups 

22A-sHDL 22A-P-sHDL 

Peptide 

AUC (mg*h/dL) 554.0 (22.0) 1721.0 (10.6)*** 

K (h-1) 0.3 (25.8) 0.2 (12.0) 

T ½ (h) 2.1 (22.4) 4.2 (10.8)** 

CL (dL/h) 2.3 (21.8) 0.7 (10.9)** 

Vd (dL) 6.9 (7.7) 4.4 (6.2)** 

PL 

AUC (mg*h/dL) 424.4 (15.7) 371.8 (23.5) 

K (h-1) 0.4 (23.8) 0.5 (16.0) 

T ½ (h) 1.8 (18.8) 1.3 (11.4)* 

CL (dL/h) 0.1 (7.7) 0.1 (7.0) 

Vd (dL) 0.1 (21.4) 0.1 (2.1) 

FC 

Tmax,E (h) 0.5 (0.0) 0.8 (33.3) 

Emax (mg/dL) 46.7 (5.8) 44.4 (13.0) 

AUEC (mg*h/dL) 158.0 (19.1) 175.3 (28.5) 

EC 
Tmax,E (h) 0.42 (24.5) 0.4 (33.3) 

Emax (mg/dL) 51.3 (31.8) 42.2 (37.3) 

AUEC (mg*h/dL) 166.8 (12.8) 164.4 (31.8)  

Table 2. Pharmacokinetic and pharmacodynamic parameters (%CV) of peptide, total 

phospholipids (PL), free cholesterol (FC), and esterified cholesterol (EC) after 50 mg/kg doses of 

22A-sHDL and 22A-P-sHDL treatments. Data were shown as mean with CV%. *P<0.05, **P < 

0.01, ***P < 0.001. AUC: the area under the curve. K: elimination rate constant. T1/2: the half-life of 

elimination. CL: total clearance. Vd: volume of distribution. Tmax,E: time at which the Emax is 

observed. Emax: the maximum plasma concentration of different cholesterol species. AUEC: the 

area under the effect curve. 
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 Parameters 
Groups 

22A-POPC 22A-DMPC 22A-DPPC 22A-DSPC 

Peptide 

AUC (mg*h/dL) 364.0 (8.6)** 662.0 (10.0) 464.3 (15.2)* 687.2 (17.7) 

K (h-1) 0.2 (6.0) 0.2 (1.7) 0.2 (2.4) 0.2 (4.0) 

T ½ (h) 3.3 (6.2) 3.0 (1.8) 3.3 (2.4) 3.3 (4.2) 

CL (dL/h) 5.6 (11.8)** 3.2 (13.9) 4.6 (17.4) 2.9 (25.2) 

Vd (dL) 27.1 (16.7)** 14.0 (15.5) 21.9 (19.0) 13.7 (29.1) 

PL 

AUC (mg*h/dL) 371.6 (29.0) 703.2 (23.2) 934.9 (22.8) 2396 (21.1)*** 

K (h-1) 0.7 (10.6)*** 0.2 (4.4) 0.3 (16.8) 0.0 (12.6)** 

T ½ (h) 1.0 (9.8)*** 3.3 (4.4) 2.2 (18.6)* 6.0 (12.4)*** 

CL (dL/h) 0.1 (22.2) 0.1 (23.3) 0.0 (27.7)*** 0.0 (27.3)*** 

Vd (dL) 0.2 (29.8) 0.3 (23.3) 0.2 (45.9) 0.1 (16.0)* 

FC 

Tmax,E (h) 0.7 (35.4) 0.4 (28.3) 0.7 (35.4) 1.3 (35.4)* 

Emax (mg/dL) 25.8 (36.8) 37.6 (19.8) 44.8 (5.1) 51.5 (15.3) 

AUEC (mg*h/dL) 79.4 (33.9) 126.5 (10.0) 215.0 (20.9) 536.4 (19.1)*** 

EC 

Tmax,E (h) 0.5 (70.7) 0.8 (28.3) 0.9 (84.3) 6.7 (28.3)** 

Emax (mg/dL) 7.7 (65.2) 28.2 (30.3) 24.9 (13.7) 20.6 (24.7) 

AUEC (mg*h/dL) 84.8 (65.3) 93.3 (41.9) 98.9 (31.6) 334.7 (18.0)** 

 

Table 3. Pharmacokinetic and pharmacodynamic parameters (%CV) of 22A peptide, total 

phospholipids (PL), free cholesterol (FC), and esterified cholesterol (EC) after 50 mg/kg doses of 

22A-POPC, 22A-DMPC, 22A-DPPC, and 22A-DSPC sHDL treatments. Data were shown as 

mean with CV%. *P<0.05, **P < 0.01, ***P < 0.001. AUC: the area under the curve. K: elimination 

rate constant. T1/2: the half-life of elimination. CL: total clearance. Vd: volume of distribution. Tmax,E: 

time at which the Emax is observed. Emax: the maximum plasma concentration of different 

cholesterol species. AUEC: the area under the effect curve. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Name 
Particle Size 

(nm)a 

Retention Time 

(min)b 

Purity 

(%)c 

Impurity (%)c 

Free Peptide Liposome 

22A-DMPC 10.1 ± 3.3 8.0 98.5 1.1 0.4 

21A-DMPC 9.9 ± 3.4 7.8 99.4 0.6 0.0 

22A-P-DMPC 10.5 ± 3.6 7.6 98.2 1.8 0.0 

22A-POPC 10.4 ± 3.9 8.2 98.0 0.9 1.1 

22A-DMPC 8.3 ± 1.9 8.1 99.1 0.9 0.0 

22A-DPPC 9.2 ± 2.3 8.0 98.8 0.9 0.3 

22A-DSPC 9.9 ± 2.5 7.8 99.2 0.8 0.0 

 

Supplemental Table 1. Characterization of sHDL particles prepared with different peptides and 

phospholipids. aParticle size of sHDL measured by DLS; bRetention time of sHDL particle 

measured by GPC; cPurity and impurity of sHDL determined by area under the curve from GPC. 
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Name Vmax (µM/h) Km (µM) R square 

22A-DMPC 43.2 ± 4.9 14.5 ± 3.6 0.97 

21A-DMPC 16.8 ± 10.1 32.0 ± 31.8 0.80 

22A-P-DMPC 33.4 ± 3.6 7.1 ± 2.2 0.93 

22A-POPC 35.7 ± 1.7 11.0 ± 1.5 0.97 

22A-DMPC 11.9 ± 3.0 22.2 ± 12.1 0.84 

22A-DPPC Ambiguous Ambiguous Ambiguous 

22A-DSPC Ambiguous Ambiguous Ambiguous 

 

Supplemental Table 2. Michaelis-Menten parameters of sHDL particles prepared with different 

peptides and phospholipids. 

 


