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Abstract  

Glyburide is frequently used to treat gestational diabetes due to its low fetal accumulation 

resulting from placental efflux by the BCRP/ABCG2 transporter. Here we sought to determine 

how exposure to the dietary phytoestrogen genistein and expression of a loss-of-function 

polymorphism in the ABCG2 gene (C421A) impacted the transport of glyburide by BCRP using 

stably-transfected human embryonic kidney 293 (HEK) cells, human placental choriocarcinoma 

BeWo cells and human placental explants. Genistein competitively inhibited the BCRP-mediated 

transport of 3H-glyburide in both wild-type (WT) and C421A-BCRP HEK-expressing cells, with 

greater accumulation of 3H-glyburide in cells expressing the C421A variant. In BeWo cells, 

exposure to genistein for 60 min increased the accumulation of 3H-glyburide 30-70% at 

concentrations relevant to dietary exposure (IC50 ~180 nM). Continuous exposure of BeWo cells 

to genistein for 48 h reduced the expression of BCRP mRNA and protein by up to 40%, which 

impaired BCRP transport activity. Pharmacological antagonism of the estrogen receptor 

attenuated the genistein-mediated downregulation of BCRP expression, suggesting that 

phytoestrogens may reduce BCRP levels through this hormone receptor pathway in BeWo cells. 

Interestingly, genistein treatment for 48 h did not alter BCRP protein expression in explants 

dissected from healthy term placentas. These data suggest that while genistein can act as a 

competitive inhibitor of BCRP-mediated transport, its ability to down-regulate placental BCRP 

expression may only occur in choriocarcinoma cells. Overall, this research provides important 

mechanistic data regarding how the environment (dietary genistein) and a frequent genetic 

variant (ABCG2, C421A) may alter the maternal-fetal disposition of glyburide. 
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Introduction  

Gestational diabetes (GD) is on the rise worldwide (Dabelea, et al., 2005, Ferrara, 2007) and 

affects 5-10% of pregnant women in the United States (DeSisto, et al., 2014). Glyburide (INN: 

glibenclamide) is a second-generation sulfonylurea drug used in the treatment of type II diabetes 

and more recently GD. In 2000, Langer et al. performed a prospective randomized clinical trial 

that demonstrated the efficacy and safety of glyburide in the treatment of GD as compared to 

insulin (Langer, et al., 2000). Furthermore, glyburide was undetectable in cord serum (limit of 

detection < 10 ng/ml), suggesting limited fetal exposure. These findings launched additional 

investigations (Bertini, et al., 2005, Jacobson, et al., 2005, Anjalakshi, et al., 2007, Ogunyemi, et 

al., 2007) and ultimately resulted in a major shift in the management of GD. By 2011, over 50% 

of U.S. obstetricians were prescribing glyburide as first line pharmacotherapy for GD (Camelo 

Castillo, et al., 2014). 

 

Kraemer et al. (2006) were the first to demonstrate that glyburide is actively removed from the 

fetal to the maternal circulation, suggesting that transport plays a major role in the transplacental 

disposition of glyburide (Kraemer, et al., 2006). While multiple transporters in the placenta 

interact with glyburide (Gedeon, et al., 2006, Gedeon, et al., 2008a, Gedeon, et al., 2008b, 

Hemauer, et al., 2010), there is significant evidence that points to the breast cancer resistance 

protein (BCRP/ABCG2) as the major transporter responsible for the active extrusion of glyburide 

from the placenta. This has been demonstrated using BCRP-overexpressing cells, Bcrp knockout 

mice, pregnant rats, human placentas and human placental vesicles (Pollex, et al., 2008, Zhou, et 

al., 2008, Pollex, et al., 2010, Feinshtein, et al., 2013). 
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BCRP is a transmembrane protein that moves xenobiotics and endogenous chemicals out of 

cells. In the intestine, liver and kidney, BCRP is expressed on the apical membrane of epithelial 

cells and promotes the excretion of drugs and chemicals from the body (Maliepaard, et al., 

2001). In the placenta, BCRP is primarily localized to the apical membrane of 

syncytiotrophoblasts where it transports substrates back to the maternal circulation, such that 

fetal exposure to various chemicals including glyburide is restricted (Maliepaard, et al., 2001). 

Although placental BCRP plays a critical role in protecting the fetus from exposure to glyburide, 

there is limited understanding of the potential consequences of reduced placental BCRP function 

in pregnant women prescribed glyburide for GD. Babies born to this population of women may 

be at an elevated risk of neonatal hypoglycemia as a result of fetal glyburide exposure, 

potentially leading to low birth weight, increased morbidity and impaired neurological 

development (reviewed in (Williams, 1997)). BCRP function may be compromised by genetic 

single nucleotide polymorphisms, as well as environmental factors, including dietary 

constituents.  

 

A single nucleotide polymorphism occuring at nucleotide 421 (C>A) in the ABCG2 gene leads to 

an amino acid change from glutamine to lysine (Q141K). In vitro, the C421A genotype is 

associated with reduced BCRP function (Kondo, et al., 2004, Pollex, et al., 2010). Importantly, 

the C421A genotype occurs frequently in Asian (C/A: 30%, A/A: 10%) and Caucasian (C/A: 

15%, A/A: 1%) populations (Imai, et al., 2002, Zamber, et al., 2003, Kobayashi, et al., 2005).  

 

Genistein is a soy isoflavone that is found naturally in plants of the Leguminosae family and 

occurs abundantly in soybeans (USDA, 2008, USB, 2014). Considering the increasing 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on February 5, 2016 as DOI: 10.1124/jpet.115.230185

 at A
SPE

T
 Journals on M

arch 20, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


JPET #230185 

6 
 

consumption of soy-containing products (i.e., tofu, soy formula, dietary supplements) over the 

last 10 years (USB, 2014), it is important to recognize that components of soy, including 

genistein, may interfere with the disposition of prescribed drugs. Genistein alone and in 

combination with other isoflavones has been shown to directly interfere with the BCRP-mediated 

disposition of drugs in vivo including BCRP substrates enrofloxacin and nitrofurantoin (Pulido, 

et al., 2006, Merino, et al., 2010). Genistein also interacts with proteins that may regulate 

placental BCRP expression, including the estrogen receptor and the epidermal growth factor 

receptor (Kuiper, et al., 1998, Traxler, et al., 1999). Considering this evidence, genistein may 

reduce placental BCRP function in two distinct manners, by 1) direct inhibition of BCRP activity 

and 2) altered transcriptional regulation of BCRP. 

 

Due to the increased use of glyburide in GD treatment and the sensitivity of the developing fetus, 

it is critical to consider separately and together the influence of genetic and environmental 

factors on the placental BCRP-mediated disposition of glyburide. The purpose of this study was 

to use complementary in vitro and ex vivo model systems to characterize the molecular 

mechanisms by which dietary-relevant concentrations of genistein impair the transport of 

glyburide by BCRP in placental trophoblasts. 
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Materials and Methods 

Chemicals 

Unless otherwise specified, all chemicals were obtained from Sigma-Aldrich (St. Louis, MO). 

 

Cell Culture  

Human embryonic kidney-293 (HEK) cells were stably transfected with an empty vector (EV, 

pcDNA 3.1), the human wild-type (WT) BCRP/ABCG2 gene or the human C421A 

BCRP/ABCG2 variant (kindly provided by Dr. Robert Robey, National Cancer Institute, 

National Institutes of Health, Bethesda, MD) (Morisaki, et al., 2005). Cells were maintained in 

Dulbecco’s Modified Eagle Medium (Life Technologies, Carlsbad, CA) with 10% fetal bovine 

serum (Atlanta Biologicals, Norcross, GA), 1% penicillin-streptomycin (Life Technologies) and 

0.2 mg/ml geneticin (Life Technologies) to select for transfected cells. Human placental 

choriocarcinoma BeWo cells were purchased from American Type Culture Collection (ATCC, 

Manassas, VA) and grown in phenol-red free Dulbecco’s Modified Eagle Medium: F-12 (Life 

Technologies) with 10% charcoal-stripped and dextran-treated fetal bovine serum (Atlanta 

Biologicals) and 1% penicillin-streptomycin (Life Technologies). All cells were maintained at 

37°C with 5% CO2 and used in experiments at 80-90% confluence. For the regulation studies, 

BeWo cells were incubated with genistein (0-10 μM) or ICI 182,780 (0-1 μM) for 48 h, after 

which they were processed for mRNA, protein, or functional analysis. All chemicals were 

dissolved in dimethyl sulfoxide (DMSO) such that the final percentage (% v/v) of DMSO did not 

exceed 0.1% of the treatment media. 
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Flow Cytometry  

HEK cells overexpressing the EV, WT-BCRP or C421A-BCRP gene were suspended in cold 

isotonic PBS with 0.5% bovine serum albumin (BSA), centrifuged (500 g, 5 min) and washed 

three times in PBS with 0.5% BSA. Cells in suspension were blocked with human IgG (2 

μg/500,000 cells in PBS/0.5% BSA) for 15 min at room temperature. Cells were then incubated 

for 45 min at 4°C with the monoclonal phycoerthyrin-labeled anti-BCRP antibody (5D3) or the 

phycoerthyrin-labeled negative control IgG antibody (R&D Systems, Minneapolis, MN) 

according to the manufacturer’s protocol. Cells were washed three times (5 min with PBS/0.5% 

BSA) and resuspended in 2% paraformaldehyde/PBS for flow cytometry analysis using a 

Gallios/FC500 Cytometer with 488-nm wavelength laser excitation (Beckman Coulter, 

Indianapolis, IN) in the Flow Cytometry/Cell Sorting Core Facility at Rutgers University.   

 

Hoechst 33342 Accumulation Assay 

The BCRP-specific fluorescent substrate, Hoechst 33342, was used to quantify BCRP function in 

HEK and BeWo cells as previously described (Bircsak, et al., 2013). Briefly, HEK and BeWo 

cells were trypsinized and added to a 96-well plate. Following centrifugation (500 g, 5 min, 5 

°C) and removal of the media, cells were loaded with Hoechst 33342 (7-15 µM) in the presence 

or absence of the BCRP-specific inhibitor, Ko143 (1-3000 nM), or the test compound, genistein 

(0.1-100 µM) for 30 min at 37°C and 5% CO2 (uptake phase). Cells were washed, centrifuged, 

and resuspended in substrate-free media with or without inhibitor for 1 h (efflux phase). During 

all phases, inhibitor compounds were initially dissolved in DMSO and did not exceed 1% (v/v) 

of the final treatment media. Following the efflux phase, cells were centrifuged, washed, and 

resuspended in cold PBS for quantification of intracellular fluorescence using the Cellometer 
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Vision automated cell counter (Nexcelom Bioscience, Lawrence, MA). Cell suspension (20 µl) 

was added to the cell counting chamber and each sample was analyzed using bright-field images 

for cell size and cell number. A VB-450-302 filter (excitation/emission: 375/450) allowed for 

intracellular fluorescence detection of Hoechst 33342. The total number of cells analyzed for 

each sample ranged from 200 to 2000. In BeWo cells, raw fluorescence intensity for each cell 

was normalized to cell size. 

 

3H-Glyburide Accumulation Assay 

 HEK and BeWo cells were trypsinized and added to a 96-well plate. Following centrifugation 

(500 g, 5 min, 5°C) and removal of the media, cells were loaded with 3H-glyburide (0.1-10 µM; 

Specific Activity: 40 µCi; Perkin Elmer, Waltham, MA) in the presence and absence of the 

BCRP-specific inhibitor, Ko143 (1-3000 nM), or the test compound, genistein (0.01-20 µM) for 

1 h at 37 °C and 5% CO2. Inhibitors were dissolved in DMSO such that the final concentration of 

DMSO did not exceed 1% (v/v) in the final treatment media. Following the 1 h incubation, cells 

were centrifuged, washed, and lysed using 1 M NaOH. Lysates were then neutralized using 1 M 

HCl and added to 4 ml ScintiSafe Econo 1 liquid scintillation fluid (Fisher Scientific, Waltham, 

MA) in 7 ml glass liquid scintillation vials (Perkin Elmer). Radioactivity was detected using a 

TriCarb 2100TR Liquid Scintillation Analyzer (Perkin Elmer-Packard, Waltham, MA). A 

standard curve was used to extrapolate glyburide concentrations. Accumulation of glyburide was 

normalized to the total protein concentration of cell lysates from representative wells using the 

bicinchoninic acid (BCA) assay (Pierce Biotechnology, Rockford, IL). 
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Western Blot 

HEK and BeWo cells were lysed in lysis buffer (20 mM Tris-HCl, 150 mM NaCl, 5 mM EDTA, 

1% Triton X-100 and 1% protease inhibitor cocktail). Placenta membrane fractions were 

prepared as previously described (Memon, et al., 2014). Protein concentrations were determined 

by the BCA assay. Five to ten μg total protein were added to SDS-polyacrylamide 4-12% Bis-

Tris gels (Life Technologies) which were resolved by electrophoresis. Transfer of proteins onto 

polyvinylidene fluoride membranes was completed using an overnight transfer apparatus (Biorad 

Criterion Blotter, Biorad, Hercules, CA). Membranes were blocked using 5% non-fat milk in 

0.5% Tween-20-PBS, then incubated with primary antibodies in 2% non-fat milk in 0.5% 

Tween-20-PBS for 2 h. Primary antibodies detected proteins including BCRP (BXP-53, 1:5000, 

Enzo Life Sciences, Farmingdale, NY), β-Actin (Ab8227, 1:2000, Abcam, Cambridge, MA) and 

Na+/K+ ATPase (Ab76020, 1:20000, Abcam). The membranes were washed and species-specific 

HRP-conjugated secondary antibodies were added to the blots for 1 h. Supersignal West Dura 

Extended Duration Substrate (Pierce Biotechnology) was used for chemiluminescent detection of 

proteins with a Fluorchem Imager (ProteinSimple, Santa Clara, CA). Semi-quantitation of bands 

was performed using the AlphaView Software (ProteinSimple). β-Actin or Na+/K+ ATPase were 

used as loading controls where appropriate. 

 

RNA Isolation and Real-Time Quantitative PCR 

BeWo cells were collected in Buffer RLT provided in the RNeasy Mini Kit (Qiagen, 

Germantown, MD), plus 1% β-mercaptoethanol. Cells were lysed using QIAshredder columns 

(Qiagen), and total RNA was isolated with the RNeasy Mini Kit (Qiagen) according to the 

manufacturer’s protocol. Total RNA concentration and purity (260/280) were determined using a 
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Nanodrop spectrophotometer (Fisher Scientific). Complementary DNA (cDNA) was generated 

from total RNA (500 ng) using the High-Capacity cDNA Reverse Transcription Kit (Life 

Technologies) and a MultiGene OptiMax Thermal Cycler (Labnet International Inc., Edison, 

NJ). Quantitative PCR (qPCR) was performed with specific forward and reverse primers 

(Integrated DNA Technologies, Inc., Coralville, IA), cDNA, Sybr Green dye (Life Technologies) 

and a ViiA7 RT-PCR System (Life Technologies) in the Bionomics Research and Technology 

Center at Rutgers University. Ct values were converted to delta delta Ct values by comparison to 

ribosomal protein 13A (RPL13A) as a reference gene and the DMSO-treated control cells. 

Primer sequences for BCRP and RPL13A are provided in Supplemental Table 1. 

 

Patient Selection 

Written informed consent was obtained and placentas were collected from five healthy women 

with uncomplicated pregnancies following term delivery by scheduled cesarean section. 

Inclusion criteria were healthy women, ages 18-40, term gestation (≥ 36 weeks) and scheduled 

cesarean section without labor. Exclusion criteria included chronic medical conditions (i.e., 

hypertension, diabetes, autoimmune disorders), pregnancy-induced medical conditions (i.e., 

pregnancy-induced hypertension, preeclampsia, gestational diabetes), maternal infection, clinical 

chorioamnionitis, medication use (with the exception of prenatal vitamins), maternal smoking, 

alcohol or drug abuse and known fetal chromosomal abnormalities. All placentas expressed two 

wild-type alleles (C/C) at the 421 nucleotide position in the ABCG2 gene as determined by a 

Fluidigm Biomark Genetic Analysis system in the Bionomics Research and Technology Center 

at Rutgers University. Other patient demographic information is provided in Supplemental Table 

2. The Institutional Review Boards of Robert Wood Johnson Medical School (RWJMS) 
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(Protocol #0220100258) and Rutgers University (Protocol #E12-024) approved this study. While 

the range of maternal ages in this study was 34-39 years, there has been no documented effect of 

maternal age on placental BCRP expression. 

 

Placental Explants 

All placentas were obtained within 10 min of delivery and processed within 2 h. Placentas were 

carefully inspected for any visible abnormalities and location of umbilical cord. Only placentas 

with central or eccentric cord insertion were used. The maternal decidua and the chorionic plate 

along the overlying membranes were removed and sections of villous tissue were washed in PBS 

three times to remove maternal blood before dissection into 2 x 2 x 2 mm (8 mm3) pieces of 

tissue. In a 24-well dish, two pieces of 8 mm3 villous tissue were cultured in DMEM:F12 media 

without phenol red (Life Technologies) and with 10% charcoal-stripped and dextran-treated fetal 

bovine serum (Atlanta Biologicals) and 1% penicillin-streptomycin (Life Technologies). To 

allow for complete degeneration and regeneration of the syncytium as described by other 

laboratories (Siman, et al., 2001), explants were maintained in culture for 5 days, with the media 

changed and collected every 24 h. On day 5, genistein (0-10 μM) treatment began for 48 h 

(media not changed during 48 h treatment). Genistein was dissolved in DMSO and the final 

DMSO percentage was 0.1% (v/v) in the treatment media. Following the 48 h treatment, explants 

were washed in PBS and frozen in liquid nitrogen before homogenization in sucrose (250 mM)-

Tris (10 mM) buffer (pH 7.4) with protease inhibitors (1%, v/v), using the TissueLyser LT 

(Qiagen) according to the manufacturer’s protocol. 
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hCG ELISA and LDH Assay 

Each day of explant culture, media was collected for assessment of syncytiotrophoblast function 

and overall tissue integrity by quantification of human chorionic gonadotropin (hCG) and lactate 

dehydrogenase (LDH), respectively. The hCG ELISA was completed using the manufacturer’s 

protocol (Calbiotech, Spring Valley, CA). Activity of LDH in the media was determined using 

the manufacturer’s protocol. 

 

Statistical Analysis 

Data are presented as mean ± SD of multiple independent experiments (n=3-5) and analyzed 

using Graphpad Prism 5.0 (Graphpad Software Inc., La Jolla, CA). Two-way ANOVA with 

Bonferroni post-test, One-way ANOVA with Newman-Keuls post-test, or a two-tailed student’s 

t-test were used to assess statistical significance (p<0.05) according to the number of 

comparisons and variables. Nonlinear regression analysis (dose-response: [log] inhibitor vs 

response—Variable slope (four parameters) or Michaelis-Menten) was used to determine kinetic 

parameters (IC50, Km, Jmax).   
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Results  

Functional Inhibition of BCRP by Genistein  

WT- and C421A-BCRP Overexpressing HEK Cells. Whole cell and cell surface protein 

expression of BCRP were assessed by western blot and flow cytometry, respectively. Three 

independent experiments revealed that BCRP protein expression in whole cell lysates was 

reduced by about 30% in C421A-BCRP expressing cells compared to WT-BCRP expressing 

cells (p=0.172) (Fig 1A). At the cell surface, BCRP protein expression in the C421A-BCRP cells 

was significantly decreased by 50% compared to the WT cells (Fig 1B). Both methods 

confirmed the absence of BCRP protein in HEK cells expressing the EV (data not shown).  

 

Two substrate accumulation assays (Hoechst 33342 and 3H-glyburide) were employed to 

examine modulation of BCRP transport activity by pharmacological inhibition and genetic 

variation. Initial experiments determined the optimal substrate concentrations for use in the two 

accumulation assays (Hoechst 33342, 7 µM and 3H-glyburide, 10 µM unlabeled glyburide and 

0.1 µM 3H-glyburide; Supplemental Fig 1). In the absence of inhibitor, there was a trend for the 

cells overexpressing the variant BCRP (C421A) to accumulate 50-100% more Hoechst 33342 or 

3H-glyburide than the respective WT-BCRP cells (Fig 2). The BCRP-specific inhibitor Ko143 

increased the accumulation of Hoechst 33342 and 3H-glyburide in a concentration-dependent 

manner in both BCRP genotypes (Figs 2A and 2C), demonstrating the ability of the assays to 

detect inhibition of BCRP activity. Similar to Ko143, genistein increased the accumulation of 

Hoechst 33342 and 3H-glyburide in WT- and C421A-BCRP expressing cells (Figs 2B and 2D). 

Confirming the involvement of the BCRP transporter in the genistein-induced substrate 

accumulation, EV cells lacking BCRP protein accumulated both substrates which was not altered 
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by genistein (data not shown). It should be noted that Ko143 significantly increased the 

accumulation of both BCRP substrates in the C421A-BCRP cells at lower concentrations than in 

WT-BCRP cells. Further, the half-maximal inhibitory concentration (IC50) value for the 

inhibition of 3H-glyburide transport in the C421A-BCRP (10.1 ± 3.11 nM) cells by Ko143 was 

50% lower than the WT-BCRP cells (21.5 ± 1.81 nM) (Table 1). For genistein, the IC50 values 

for the inhibition of 3H-glyburide transport in both BCRP genotypes were comparable (WT: 4.65 

± 0.27, C421A: 3.92 ± 1.26) (Table 1).  

 

To determine the mechanism by which genistein inhibited the BCRP-mediated transport of 

glyburide, accumulation experiments were performed using varying concentrations of both 

glyburide and genistein. Genistein significantly decreased the Km value for glyburide transport 

by 80% without changing the Jmax in either BCRP genotypes (Fig 3; Table 2), suggesting that 

genistein competitively inhibited the BCRP-mediated efflux of glyburide. In addition, the mean 

rate of 3H-glyburide accumulation in the genistein-treated cells (2 and 10 μM) was significantly 

greater than the mean rate of 3H-glyburide accumulation in the control cells in both genotypes (0 

μM genistein) (Fig 3). 

 

Placental BeWo Cells. Expression of endogenous BCRP protein in placental BeWo cells was 

confirmed by western blot along with BCRP protein expression in plasma membranes isolated 

from three individual placentas (Fig 4A). BCRP function in BeWo cells was assessed using two 

substrate accumulation assays (Hoechst 33342 and 3H-glyburide) (Supplemental Fig 2). Ko143 

and genistein significantly increased the accumulation of both Hoechst 33342 and 3H-glyburide 

by 30-100% in placental BeWo cells (Fig 4B-E). Notably, concentrations as low as 0.01 µM 
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genistein inhibited 3H-glyburide transport (IC50= 0.18 ± 0.22 μM, Table 1). Prototypical 

inhibitors of other efflux transporters (MDR1: PSC833, 2 µM; MRPs: 25 µM MK571) did not 

alter the accumulation of 3H-glyburide in the BeWo cells (data not shown), supporting the 

specific involvement of BCRP in the inhibition of glyburide transport by genistein. 

 

Regulation of Placental BCRP Expression by Genistein 

BeWo Cells. To determine whether genistein could alter the transcriptional regulation of BCRP 

expression, placental BeWo cells were incubated with genistein for 48 h. Compared to control 

cells, genistein significantly decreased BCRP mRNA and protein expression up to 40% (Fig 5A 

and B). Furthermore, 48 h exposure to genistein (5 μM) increased the accumulation of 3H-

glyburide by 30% in placental BeWo cells, which was comparable to the pharmacological 

inhibition of glyburide transport by Ko143 (100 nM) (Fig 5C). Notably, there was no effect of 

genistein on mRNA and protein expression of other efflux transporters including the multidrug 

resistance-associated protein 1 (MRP1) (data not shown). Additionally, there was no difference 

in cell morphology nor the syncytialization marker, syncytin mRNA expression, suggesting that 

genistein did not alter BeWo cell differentiation (data not shown). Because genistein is a 

phytoestrogen, the mechanism by which it downregulated BCRP mRNA and protein expression 

in BeWo cells was investigated using the estrogen receptor α antagonist ICI 182,780. Exposure 

to ICI 182,780 (1 µM) for 48 h did not alter BCRP protein expression; however, the combination 

of genistein and ICI 182,780 together abolished the down-regulation of BCRP protein expression 

caused by genistein alone (Fig 6).  
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Placental Explants. Additional experiments aimed to determine whether genistein-mediated 

down-regulation of BCRP expression could occur in native placental tissue. Explants were 

obtained from healthy human term placentas and allowed to undergo shedding and 

syncytialization for 5 days prior to treatment with genistein on days 5-7. Viability of the explants 

was confirmed by a decrease in LDH activity in the media over seven days (Supplemental Fig 

3A; Siman et al., 2001). The degree of syncytialization was verified by detection of hCG in the 

media and by histologic analysis (Supplemental Fig 3B and 3C; (Siman, et al., 2001)). Genistein 

treatment did not affect LDH activity or hCG secretion. Furthermore, BCRP protein expression 

was not altered by genistein (1-10 µM, 48 h) in human term placental explants (Fig 7). 
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Discussion  

The present study demonstrated the influence of genetic and dietary factors on the BCRP-

mediated transport of glyburide using complementary in vitro and ex vivo placenta model 

systems. The C421A-BCRP genotype alone reduced the transport of 3H-glyburide compared to 

WT-BCRP control cells, while genistein competitively inhibited 3H-glyburide transport by 

BCRP to a similar extent in both genotypes. Confirming the potential for a placenta-specific 

glyburide accumulation, the BCRP-mediated transport of 3H-glyburide was inhibited by a short-

term exposure (1 h) to genistein in placental BeWo cells. Moreover, BCRP mRNA, protein and 

function were reduced in BeWo cells exposed to genistein for 48 h; however, the same genistein 

exposure did not alter BCRP protein expression in normal placental explant tissues. Results from 

the present study support future investigations that consider genetic and environmental (dietary 

genistein) factors when optimizing glyburide treatment in GD patients. 

 

In this study, we confirmed the reduced capability of the C421A-BCRP protein to transport 3H-

glyburide in HEK cells that overexpress the mutated BCRP protein (Q141K), as compared to 

WT-BCRP overexpressing cells (Fig 2, Table 2). While Pollex et al. (2010) described BCRP 

protein cell surface expression to be equal between genotypes, we observed less total (30%) and 

cell surface (50%, p<0.05) BCRP protein expression in the C421A-BCRP HEK cells (Fig 1). 

Considering these findings, altered BCRP function in our experiments may be due to reduced 

BCRP protein trafficking to the cell surface. This is in line with other studies reporting decreased 

BCRP protein expression and function in C421A-BCRP overexpressing cells (Imai, et al., 2002, 

Kondo, et al., 2004, Tamura, et al., 2007, Furukawa, et al., 2009, Woodward, et al., 2013). In 

human tissue, the heterozygous variant genotype (421C/A) did not change BCRP protein 
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expression in the intestine or placenta, but there was a significant decrease in BCRP protein 

expression in placentas of individuals homozygous for the SNP (421A/A) (Zamber, et al., 2003, 

Kobayashi, et al., 2005, Urquhart, et al., 2008). Taken together, there may be differences in 

BCRP protein expression in cells or tissue based on the copy number of the C421A gene. 

Furthermore, there may be a cell-type and/or tissue specific effect of C421A on BCRP protein 

expression. Most importantly, patients expressing one or two variant alleles exhibit increased 

blood concentrations (sulfasalazine, diflomotecan, rosuvastatin) and enhanced side effects of 

drugs (gefitinib) that are substrates for BCRP (Sparreboom, et al., 2004, Cusatis, et al., 2006, 

Urquhart, et al., 2008, Keskitalo, et al., 2009). Due to these clinical findings and the frequent 

occurrence of the SNP, the International Transporter Consortium named the C421A BCRP 

genetic variant as a clinically relevant transporter polymorphism that should be evaluated in drug 

development studies (Giacomini, et al., 2013).  

 

Over the past 10 years there has been an increase in the sale and consumption of soy in the 

United States, likely due to the growing number of reports which suggest that a soy diet provides 

health benefits (Strom, et al., 1999, Chen, et al., 2003, Hussain, et al., 2003, Constantinou, et al., 

2005, Bitto, et al., 2008, Clarkson, et al., 2011, Squadrito, et al., 2013). Taken together with the 

increase in the prescribing of glyburide for GD (Camelo Castillo, et al., 2014), there is a need to 

investigate the impact of soy on glyburide transport. Genistein and its conjugated metabolites 

(genistein-sulfate and genistein-glucuronide) are substrates for BCRP, suggesting that they 

competitively inhibit BCRP transport (Imai, et al., 2004, Enokizono, et al., 2007, Alvarez, et al., 

2011, Mease, et al., 2012). However, others propose that genistein can non-competitively inhibit 

BCRP transport via disruption of ATP hydrolysis as well (Randak, et al., 1999, Di Pietro, et al., 
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2002). To assess the mechanism of genistein-inhibition, we employed the 3H-glyburide 

accumulation assay (Pollex, et al., 2010) and used Michaelis Menten non-linear regression 

analysis to calculate kinetic parameters (Km and Jmax) which represent substrate affinity and rate 

of accumulation, respectively. It should be noted that because the assay measured 3H-glyburide 

accumulation, rather than rate of 3H-glyburide efflux, the kinetic parameters trended in the 

opposite direction of what is normally observed (i.e., decrease in Km indicates reduced affinity of 

3H-glyburide for BCRP rather than increased affinity). In both the WT-BCRP and the C421A-

BCRP overexpressing cells, genistein competitively inhibited the BCRP-mediated transport of 

3H-glyburide to similar degrees (Fig 2D and 3, Table 2). The Km and Jmax values derived from 

these experiments, however, were calculated for direct comparison to each other and cannot be 

directly extrapolated to an in vivo situation. Determining Km and Vmax in a study that measures 

3H-glyburide efflux rather than accumulation may better correlate to an in vivo glyburide-

genistein interaction. While various studies have demonstrated genistein to interfere with the 

transport of other BCRP substrates (i.e., mitoxantrone, enrofloxacin) (Zhang, et al., 2004, Pulido, 

et al., 2006), this is the first report implicating genistein in the inhibition of 3H-glyburide 

transport by BCRP. It is important to note that Ko143 significantly reduced 3H-glyburide 

transport in the C421A-BCRP overexpressing cells at a lower concentration than the WT-BCRP 

overexpressing cells, while genistein equally inhibited 3H-glyburide transport between cell types 

(Table 1). This suggests that individuals with the C421A-BCRP genotype may be at a greater 

risk for chemically induced BCRP inhibition depending on the inhibitor compound.  

 

BeWo cells are commonly used as a model of placental transport because they endogenously 

express functional BCRP protein and produce the placenta-specific hormone, hCG (Takeuchi, et 
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al., 1990). In placental BeWo cells, genistein increased the accumulation of Hoechst 33342 and 

3H-glyburide (Fig 4). Interestingly, the concentrations of genistein which inhibited 3H-glyburide 

transport out of the BeWo cells were quite low and within the range of those observed in the 

plasma or serum of people consuming a soy diet (0.01- 3 µM) (Arai, et al., 2000, Uehar, et al., 

2000, Frankenfeld, et al., 2003, Gardner, et al., 2009). These data provide plausibility to the 

assertion that genistein may be able to inhibit BCRP transport of substrates in vivo. The BCRP-

specific inhibitor, Ko143, was used as a positive control to confirm the involvement of BCRP in 

the genistein-mediated cellular accumulation of Hoechst 33342 and 3H-glyburide. 

 

Placental BCRP function may also be affected by chemical-mediated changes in mRNA and/or 

protein expression. Following 48 h exposure to genistein, BCRP mRNA and protein expression 

was decreased in BeWo cells compared to the vehicle treated cells (Fig 5A and B). In turn, this 

caused significant accumulation of 3H-glyburide in cells that were exposed to genistein (5 μM, 

48 h) (Fig 5C). Only one other study has reported a significant decrease in ABCG2 mRNA 

expression following an in vitro genistein exposure (15 µM, 24 h, gastric cancer cells, MGC803) 

(Huang, et al., 2014), while many others detected no change in BCRP mRNA and/or protein 

expression in other cell types (Imai, et al., 2004, Ebert, et al., 2007, Arias, et al., 2014).  

 

In the 1960’s, genistein was recognized as a phytoestrogen due to its ability to alter reproductive 

function in sheep (Barrett, et al., 1965) and agonize both ERα (IC50= 145 nM) and β (IC50= 8.4  

nM) with a greater affinity for ERβ (Martin, et al., 1978, Kuiper, et al., 1998). This is unlike the 

endogenous ligand, 17β-estradiol, which agonizes both ERα (IC50= 0.93 nM) and ERβ (IC50= 

1.06 nM) with similar affinities (Kuiper, et al., 1998).  Importantly, an estrogen response element 
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has been identified in the promoter region of the ABCG2 gene (Ee, et al., 2004b). Furthermore, 

17β-estradiol has been shown to down-regulate BCRP protein expression in various cells and 

tissues including placental BeWo cells (Imai, et al., 2005, Wang, et al., 2006, Mahringer and 

Fricker, 2010), which express both ERα and ERβ (Gambino, et al., 2012). It should be noted, 

however, that other studies have observed an up-regulation of BCRP protein by 17β-estradiol in 

BeWo cells (Ee, et al., 2004a, Prouillac, et al., 2009) and cytotrophoblasts (Evseenko, et al., 

2006). Nonetheless, we aimed to explore the involvement of the ER signaling pathway in the 

genistein-mediated downregulation of BCRP expression in placental BeWo cells, the ERα 

antagonist ICI 182,780 was used (Van Den Bemd, et al., 1999, Peekhaus, et al., 2004). ICI 

182,780 (1 µM) alone did not alter BCRP expression but was able to prevent the down-

regulation of BCRP by genistein (Fig 6). These findings suggest that ER signaling participates in 

the repression of BCRP expression by genistein in BeWo cells. 

 

Placental explants are an ex vivo model of the human term placenta as they retain the 

morphology of the human placental villi, contain multiple cell types, and are frequently used in 

examining transporter regulation in normal human placenta (Atkinson, et al., 2006, Javam, et al., 

2014). Genistein did not alter BCRP protein expression in human term placental explants (Fig 7). 

While these findings contrast those observed in placental BeWo cells, it is important to note that 

extrapolation of gene regulation findings observed in choriocarcinoma cells to normal placenta 

must be made with caution. DNA methylation patterns vary between normal primary 

trophoblasts and choriocarcinoma cells, contributing to the overall differential gene expression 

and regulation profiles between the two types of cells (Novakovic, et al., 2011). Additionally, 

while explants are a model of the term placenta, it is important to note that BeWo cells are 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on February 5, 2016 as DOI: 10.1124/jpet.115.230185

 at A
SPE

T
 Journals on M

arch 20, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


JPET #230185 

23 
 

generally representative of first trimester trophoblasts (Wice, et al., 1990) and therefore 

differences in the regulation of protein expression between the two models is conceivable. 

Furthermore, explants offer a more complex system than trophoblasts alone. Capillary 

endothelial cells also express BCRP (Maliepaard, et al., 2001) and may confound the results 

from the explant studies as the western blot results represent BCRP expression in the whole 

explant homogenate and not trophoblasts alone. Future research should address the regulation of 

BCRP expression in explants using IHC to localize BCRP expression or by using isolated 

primary trophoblasts. Altogether, results from this study indicate that the direct pharmacological 

inhibition of BCRP by genistein may have greater implications for BCRP-mediated transport of 

glyburide than modulation of transcription and/or translation.  

 

The prescription of glyburide for the management of GD has reached an all-time high as most 

initial reports found no differences in neonatal hypoglycemia rates between insulin and glyburide 

managed GD (Langer, et al., 2000, Jacobson, et al., 2005, Anjalakshi, et al., 2007). More 

recently, Schartz et al., described a weak, but significant negative correlation between neonatal 

blood glucose concentration and umbilical cord blood glyburide concentration (Schwartz, et al., 

2015). There were interindividual differences in the umbilical cord blood to maternal blood 

concentration ratios of glyburide for which the authors named genetic differences in the 

BCRP/ABCG2 gene as a likely contributor. Differences in diets, including those that are rich in 

soy, may also contribute to this variability.  

 
In summary, our data demonstrate that genistein inhibits the BCRP-mediated efflux of glyburide 

in vitro by direct inhibition and reduced protein expression in placental BeWo cells but not 

placental explants. To better optimize the individualized prescribing of glyburide for GD, future 
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research should address the contribution of the C421A-BCRP genotype and genistein in the diet 

to the transplacental passage of glyburide.  
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Figure Legends 

Figure 1. Characterization of BCRP protein in WT- and C421A-BCRP overexpressing 

HEK cells. (A) BCRP protein expression in HEK whole cell lysates was determined by western 

blot (10 µg protein homogenate/lane). Na+/K+ ATPase was used as a loading control. Western 

blot data are presented as a representative western blot from one experiment. The bar graph 

shows the semiquantitation of band densities and represents the mean ± SD from three 

independent experiments. (B) BCRP protein expression on the cell surface of HEK cells was 

determined by flow cytometry. Cells were incubated for 45 min with the phycoerthyrin-labeled 

anti-BCRP antibody (5D3) or the phycoerthyrin-labeled negative control IgG antibody (green: 

WT-BCRP 5D3 stained cells, blue: C421A-BCRP 5D3 stained cells, red: WT-BCRP IgG 

control). Flow cytometry histogram data are presented as one representative experiment. Bar 

graph represents mean ± SD fluorescence intensity of individual cells from 3 independent 

experiments. Daggers (†) represent statistically significant differences (p<0.05) compared to 

WT-BCRP. 

 

Figure 2. Inhibition of BCRP transport in WT- and C421A-BCRP overexpressing HEK 

cells. BCRP function was assessed by measuring the cellular accumulation of (A and B) Hoechst 

33342 (7 µM) or (C and D) 3H-glyburide (10 µM unlabeled glyburide, 0.1 μM 3H-glyburide) in 

the presence of increasing concentrations of the BCRP-specific inhibitor, Ko143 or genistein. 

Intracellular fluorescence and radioactivity were quantified by a Cellometer Vision or a liquid 

scintillation counter, respectively. Bar graphs represent mean ± SD (n=3 independent 

experiments). Asterisks (*) represent statistically significant differences (p<0.05) compared to 0 
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µM genotype control. Daggers (†) represent statistically significant differences (p<0.05) 

compared to WT-BCRP control. 

 

Figure 3. Characterization of the genistein-glyburide interaction mediated by BCRP. BCRP 

function was assessed in WT- and C421A-BCRP HEK-expressing cells by measuring the 

cellular accumulation of 3H-glyburide (0-500 μM unlabeled glyburide, 0.1 μM 3H-glyburide) in 

the presence of increasing concentrations of genistein (0-10 µM) and was quantified using a 

liquid scintillation counter. Data represent mean ± SD (n=3 independent experiments). Nonlinear 

regression analysis (Michaelis-Menten) was used for curve-fitting analysis.  Asterisks (*) 

represent statistically significant differences (p<0.05) in the mean rate of 3H-glyburide 

accumulation compared to the 0 µM control. 

 

Figure 4. Inhibition of BCRP transport in placental BeWo cells. (A) BCRP protein 

expression in placental BeWo whole cell lysates compared to human placenta plasma membrane 

fractions was determined by western blot (9 µg protein homogenate/lane). β-Actin was used as a 

loading control. (B-E) BCRP function was assessed in the presence of increasing concentrations 

of Ko143 (B and D) or genistein (C and E), by the accumulation of (B and C) Hoechst 33342 (15 

µM) or (D and E) 3H-glyburide (0.1 μM). Intracellular fluorescence or radioactivity was 

quantified using a Nexcelom Cellometer Vision or a liquid scintillation counter, respectively. Bar 

graphs represent mean ± SD (n=3-4 independent experiments). Asterisks (*) represent 

statistically significant differences (p<0.05) compared to the 0 µM control.  
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Figure 5. Regulation of BCRP transporter expression and function in placental BeWo cells. 

Following a 48 h exposure to genistein (0-10 µM), (A) qPCR was used to quantify BCRP and 

housekeeping gene, ribosomal protein L13A (RPL13A), mRNA expression in placental BeWo 

cells. (B) BCRP protein expression in placental BeWo whole cell lysates was determined by 

western blot (10 µg protein homogenate/lane). β-Actin was used as a loading control. Western 

blot data are presented as a representative western blot from one experiment. (C) BCRP function 

was assessed by the cellular accumulation of 3H-glyburide (0.1 μM) which was quantified using 

a liquid scintillation counter. All bar graphs represent mean ± SD (n=3-4 independent 

experiments). Asterisks (*) represent statistically significant differences (p<0.05) compared to 

the 0 µM genistein control.  

 

Figure 6. Estrogen receptor-mediated regulation of the BCRP transporter in placental 

BeWo cells. BCRP protein expression in placental BeWo whole cell lysates was determined by 

western blot (10 µg protein homogenate/lane) following a 48 h exposure to the estrogen receptor 

antagonist, ICI 182,780 in the presence and absence of genistein. β-Actin was used as a loading 

control. All western blot data are presented as a representative western blot from one experiment. 

The bar graphs are the semiquantitation of band density and represent the mean ± SD from three 

independent experiments. Asterisks (*) represent statistically significant differences (p<0.05) 

compared to the 0 µM control. 

 

Figure 7. Regulation of BCRP transporter expression in human term placental explants. 

Five healthy human term placentas were collected and processed within 2 h of delivery. Explants 

were cultured for 5 days with the media replaced every day, before treatment with genistein (1-
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10 µM) on day 5 for 48 h. BCRP protein expression in total explant lysates was determined by 

western blot (5 µg protein homogenate/lane). β-Actin was used as a loading control.  Western 

blot data are presented as a representative western blot from one placenta. The scatter dot plot is 

the semiquantitation of band density and represent five individual placentas with mean ± SD. 
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Tables 
 
Table 1. Inhibition of 3H-glyburide transport in BCRP-overexpressing cells and placental BeWo 

cells. 

 
 
 
 
 
 
 
 
 

 

 

 

aIC50 value calculated using Graphpad nonlinear regression analysis (dose-response: [log] 

inhibitor vs response—Variable slope (four parameters)) and presented as mean ± SD (n= 3-4 

independent experiments) 

bp<0.05 compared to WT-BCRP control 

 

 Transport IC50
a 

 
HEK WT-

BCRP 

HEK C421A-

BCRP 
BeWo 

Ko143 (nM) 21.5 ± 1.81 10.1 ± 3.11b 3.62 ± 3.39 

Genistein (µM) 4.65 ± 0.27 3.92 ± 1.26 0.18 ± 0.22 
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Table 2. Kinetic parameters of glyburide transport in HEK cells overexpressing BCRP protein 

(WT or C421A).a 

         Genistein (µM) 

 0 2 10  

WT-BCRP 

Km (µM) 70.5 ± 17.0 12.1 ± 6.59b 1.0 ± 0.19b 

Jmax (pmol 3H-glyburide/mg protein) 0.69 ± 0.17 0.68 ± 0.12 0.89 ± 0.23 

C421A-BCRP 

Km (µM) 14.5 ± 1.48c 2.52 ± 1.84b 0.61 ± 0.22b 

Jmax (pmol 3H-glyburide/mg protein) 0.73 ± 0.21 0.79 ± 0.11 0.82 ± 0.14 
aKm and Jmax values calculated using Graphpad nonlinear regression analysis (Michaelis-Menten) 

and are presented as mean ± SD (n= 3 independent experiments) 

bp<0.05 compared to 0 µM genotype control 

cp<0.05 compared to 0 µM WT-BCRP control 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on February 5, 2016 as DOI: 10.1124/jpet.115.230185

 at A
SPE

T
 Journals on M

arch 20, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on February 5, 2016 as DOI: 10.1124/jpet.115.230185

 at A
SPE

T
 Journals on M

arch 20, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on February 5, 2016 as DOI: 10.1124/jpet.115.230185

 at A
SPE

T
 Journals on M

arch 20, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on February 5, 2016 as DOI: 10.1124/jpet.115.230185

 at A
SPE

T
 Journals on M

arch 20, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on February 5, 2016 as DOI: 10.1124/jpet.115.230185

 at A
SPE

T
 Journals on M

arch 20, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on February 5, 2016 as DOI: 10.1124/jpet.115.230185

 at A
SPE

T
 Journals on M

arch 20, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on February 5, 2016 as DOI: 10.1124/jpet.115.230185

 at A
SPE

T
 Journals on M

arch 20, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on February 5, 2016 as DOI: 10.1124/jpet.115.230185

 at A
SPE

T
 Journals on M

arch 20, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


0.0

0.2

0.4

0.6

0.8

1.0 EV
WT-BCRP

0

5000

10000

15000

20000
EV
WT-BCRP

A 

Hoechst 33342 (µM) 
1 2.5 5 7 

Fl
uo

re
sc

en
ce

 In
te

ns
ity

 

10 20 

B 

Glyburide (µM) 
0.1 1 10 20 

pm
ol

 3 H
-g

ly
bu

rid
e/

m
g 

pr
ot

ei
n 

50 

Supplemental Figure 1. Characterization of Hoechst 33342 and 3H-
glyburide accumulation assays in HEK cells. Intracellular accumulation of (A) 
Hoechst 33342 or (B) 3H-glyburide was determined in HEK cells overexpressing 
an EV or the WT-BCRP using a Cellometer Vision or liquid scintillation counter, 
respectively. Data are presented as mean ± SD. 
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Supplemental Figure 2. Characterization of Hoechst 33342 and 3H-
glyburide accumulation assays in placental BeWo cells. Intracellular 
accumulation of (A) Hoechst 33342 or (B) 3H-glyburide was determined in 
placental BeWo cells using a Cellometer Vision or liquid scintillation counter, 
respectively. Data are presented as mean ± SD. 
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Supplemental Figure 3. Characterization of human term placental explant 
viability and trophoblast function. (A) LDH activity in explant media was 
monitored over 7 days to confirm placental explant viability. Degree of 
syncytialization was assessed by (B) detection of hCG into the media and (C) 
histologic analysis (20x magnification). Data are presented as mean ± SD from 
five individual placentas. The image is from one representative placenta. 
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Supplemental Table 1. Primer sequences for human BCRP/ABCG2 and 
RPL13A genes (5’ to 3’). 
  
Gene  Forward Primer Sequence   Reverse Primer Sequence 
ABCG2      ATCAGCTGGTTATCACTGTGAGGCC     AGTGGCTTATCCTGCTTGGAAGGC 
RPL13A     GGTGCAGGTCCTGGTGCTTGA              GGCCTCGGGAAGGGTTGGTG 
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Supplemental Table 2. Patient demographic information. 
 

a Results are presented as a range 
b Wet, untrimmed weight 
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