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Abstract 

 The yellow fever mosquito, Aedes aegypti, vectors disease-causing agents that adversely 

affect human health, most notably the viruses causing dengue and yellow fever.  The efficacy of 

current mosquito control programs are challenged by the emergence of insecticide-resistant 

mosquito populations, suggesting an urgent need for the development of chemical insecticides 

with new mechanisms of action.  One recently identified potential insecticide target is the A. 

aegypti D1-like dopamine receptor, AaDOP2.  The focus of the present study was to evaluate 

AaDOP2 antagonism both in vitro and in vivo using assay technologies with increased 

throughput.  The in vitro assays revealed AaDOP2 antagonism by four distinct chemical 

scaffolds from tricyclic antidepressant or antipsychotic chemical classes and elucidated several 

structure-activity-relationship (SAR) trends that contributed to enhanced antagonist potency 

including lipophilicity, halide substitution on the tricyclic core, and conformational rigidity.  Six 

compounds displayed previously unparalleled potency for in vitro AaDOP2 antagonism, and 

among these, asenapine, methiothepin, and cis-(Z)-flupenthixol displayed sub-nanomolar IC50 

values and caused rapid toxicity to A. aegypti larvae and/or adults in vivo.  Our study revealed a 

significant correlation between in vitro potency for AaDOP2 antagonism and in vivo toxicity, 

suggesting viability of AaDOP2 as an insecticidal target.  Taken together, this study expanded 

the repertoire of known AaDOP2 antagonists, enhanced our understanding of AaDOP2 

pharmacology, provided further support for rational targeting of AaDOP2, and demonstrated the 

utility of efficiency-enhancing in vitro and in vivo assay technologies within our genome-to-lead 

pipeline for the discovery of next-generation insecticides.   
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Introduction 

 Mosquitoes transmit pathogens and parasites that cause diseases that adversely affect 

human health worldwide including malaria, yellow fever, and dengue.  Existing approaches for 

mosquito control have demonstrated efficacy in reducing incidences of such diseases, but are 

becoming inadequate due to the emergence of insecticide-resistant mosquito populations 

(Hemingway, 2014; Hemingway and Ranson, 2000).  The need for novel mode-of-action 

compounds to control mosquitoes is further emphasized by the fact that it has been several 

decades since a new public health insecticide has been deployed to reduce the spread of vector-

borne diseases (Hemingway et al., 2006). 

 Arthropod G protein-coupled receptors (GPCRs) mediate critical biological processes 

(Hauser et al., 2006) and have emerged as potential insecticide targets (Hill et al., 2013).  

Molecular approaches, including genome sequencing efforts, have identified more than 100 

GPCRs within the genomes of several arthropod vector species (Arensburger et al., 2010; Hill et 

al., 2002; Kirkness et al., 2010; Nene et al., 2007).  Among the GPCR superfamily, the biogenic 

amine receptors are of particular interest because of their crucial roles in insect physiology and 

behavior (Fuchs et al., 2014; Hauser et al., 2006).  For example, the biogenic amine, dopamine, 

and its receptors are implicated in a variety of arthropod behaviors including arousal (Kume et 

al., 2005), locomotion (Draper et al., 2007; Mustard et al., 2010; Yellman et al., 1997), and 

olfactory learning (Kim et al., 2007; Riemensperger et al., 2011).  It is also notable that 

dopamine is associated with salivary function of vectors (Ali, 1997; Sauer et al., 2000; Simo et 

al., 2014; Simo et al., 2011), suggesting potential roles for the mediation of pathogen acquisition 

and transmission during blood feeding.  In Aedes aegypti, dopamine is also implicated in 

sclerotization and ovarian/egg development, as increased dopamine levels were observed in 
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newly emerged adults and also following a blood meal (Andersen et al., 2006).  The central roles 

of dopamine systems in fundamental biological processes offer the dopamine receptors as 

potential insecticide targets.   

 A recent study from our invertebrate receptor group supports the pursuit of D1-like 

dopamine receptors (AaDOP1 and AaDOP2) from the yellow fever mosquito, A. aegypti, as 

targets for novel mode-of-action insecticides (Meyer et al., 2012).  Specifically, AaDOP2 was 

utilized as a prototypical target for a “genome-to-lead” approach for the discovery of target-

based insecticides, where genomic sequence data were used to drive in vitro functional 

characterization of recombinant AaDOP receptors in HEK293 cells (Meyer et al., 2012).  

Following pharmacological characterization, high-throughput screening (HTS)-amenable 

evaluation of pharmacologically-active compounds identified AaDOP2 antagonists that display 

significant in vivo toxicity to mosquito larvae (Meyer et al., 2012), supporting the validity of 

targeting AaDOP2 for A. aegypti control. 

  The present study entailed a robust follow-up pharmacological analysis of AaDOP2 

antagonists  identified in a small molecule screen of the LOPAC1280 library (Meyer et al., 2012).  

To accomplish this, we developed an HTS-amenable cell-based assay that enabled an in-depth 

study of AaDOP2 antagonism by tricyclic antidepressants and structurally-related compounds.  

Several of these compounds demonstrated enhanced potency for in vitro AaDOP2 antagonism 

and greater efficacy for larval death in mosquito bioassays.  Importantly, we provided evidence 

that several AaDOP2 antagonists caused toxicity to adult A. aegypti.  Furthermore, we improved 

upon our previously described genome-to-lead pipeline via implementation of efficiency-

enhancing in vivo assay technologies.  
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Materials and Methods 

Materials 

 Cis-(Z)-flupenthixol, clozapine, mianserin, nortriptyline, imipramine, protriptyline, 

norclomipramine, pirenperone, desipramine, haloperidol, trazodone, fluoxetine, fluvoxamine, 

buspirone, (+)-butaclamol, amoxapine, amitriptyline, chlorpromazine, doxepin, loratadine, 

ketotifen, chlorprothixene, loxapine,  cyproheptadine, asenapine, diphenhydramine, ritanserin, 

ketanserin, risperidone, 3-isobutyl-1-methylxanthine (IBMX), G418, and Dulbecco’s modified 

Eagle’s medium (DMEM) were purchased from Sigma-Aldrich (St. Louis, MO).  Amperozide, 

methiothepin, clomipramine, SCH-23390, LY-310,762, R59-022, and tomoxetine were 

purchased from Tocris Bioscience (Ellisville, MO).  Benztropine was purchased from Enzo Life 

Sciences (Farmingdale, NY).  The antibiotic-antimycotic 100x solution was purchased from Life 

Technologies (Grand Island, NY).  FetalClone I serum, bovine calf serum, HEPES, and Hank’s 

balanced salt solution (HBSS) were purchased from Hyclone (Logan, UT).  The HTRF cAMP kit 

was purchased from Cisbio Bioassays (Bedford, MA). 

 

Cisbio homogenous time-resolved fluorescence (HTRF) cAMP dynamic 2 cell-based assay 

 HEK293 cells stably expressing AaDOP2 (HEK-AaDOP2) or the human D1 dopamine 

receptor (HEK-hD1) were maintained and cryogenically frozen as previously described (Meyer 

et al., 2012).  To prepare for pharmacological analysis, cells were thawed and re-suspended in 

assay buffer (HBSS, 20 mM HEPES, 0.1% Fatty acid free bovine serum albumin).  To remove 

cryogenic freezing media, cell suspensions were centrifuged at 500xg for 5 min, followed by 

aspiration of the supernatant.  Cell pellets were re-suspended in assay buffer and seeded into 

384-well plates (Perkin Elmer CulturPlate-384) at 2,000-2,500 cells per well and incubated at 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on October 20, 2014 as DOI: 10.1124/jpet.114.219717

 at A
SPE

T
 Journals on A

pril 18, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


JPET #219717 

8 
 

37°C and 5% CO2 for 1 h.  Test compounds were added using a 384-well pin tool (V&P 

Scientific).  A MultiFlo (BioTek) low-volume bulk reagent dispenser was used to dispense 3 μM 

dopamine (in assay buffer containing 500 μM IBMX and 0.02% ascorbic acid) to activate 

AaDOP2.  Drug stimulation was carried out at room temperature for 1 h.  Cells were lysed by 

sequential addition of cAMP-d2 and anti-cAMP cryptate conjugate, both diluted 1:39 in lysis 

buffer and were incubated at room temperature for 1 h.  Time-resolved fluorescence resonance 

energy transfer (TR-FRET) was measured with a lag time of 100 μs and integration time of 300 

μs using a Synergy4 (BioTek) fluorescence plate reader with a 330/80 nm excitation filter and 

emission filters of 620/10 nm and 665/8 nm.  Sensitivity parameters were set by reading the 

cAMP standard curve using the autosensitivity setting.  All experimental conditions were read 

using sensitivity settings obtained for the cAMP standard curve.  Cellular cAMP concentrations 

were estimated in GraphPad Prism by applying the 620/665 nm fluorescence ratio values to a 

standard curve of known cAMP concentrations. 

 Cyclic AMP measurements in HEK293 cells stably expressing the human D1 dopamine 

receptor were performed as described above, but 500 nM dopamine was used to stimulate cAMP 

accumulation. 

 

In vivo Aedes aegypti larval screen. 

Test compounds were evaluated for in vivo toxicity in bioassays against L3 stage A. 

aegypti larvae in a double-blind manner.  Briefly, compounds were re-suspended in water and 

added to wells of a 24-well plate (BD Bioscience, San Jose, CA) in duplicate, with each well 

containing five A. aegypti larvae in 1 ml total volume to achieve a final concentration of 400 μM 

per well (See Supplemental Figure 1 for illustrations of the assay format).  Plates were incubated 
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at 22°C, and the assay was scored for larval mortality at 24, 48, and 72 h.  Larvae unresponsive 

to gentle tapping of the plate or touch with a sterile probe were scored as dead. 

 

Aedes aegypti adult CRCs. 

 Test compounds were dissolved in deionized water to a 200 mM stock concentration and 

serially diluted in Aedes saline (Hayes, 1953) to achieve a dose range of 0.25 - 20 mM.  Four-

day-old A. aegypti adult females [average wing length of 3.4 mm, measured as described by 

Briegel (1990)] were anesthetized on ice and groups of 20 females were injected per dilution of 

test compound (0.5 μl per mosquito) or Aedes saline alone (control) using a pulled glass capillary 

needle.  Additional un-injected mosquito controls were also included.  Mosquitoes were housed 

in 10 cm diameter x 20 cm height paper coffee cup cages with lace screen (secured with rubber 

bands) and maintained at 75% humidity with 10% sucrose provided ad libitum via a cotton wick 

(See Supplemental Figure 2 for illustrations of injections and mosquito housing).  Observations 

of mortality were made daily for up to 4 d post treatment.  Mosquitoes were scored as "dead" if 

no movement was observed and confirmed by no response to a gentle touch of the legs with a 

metal probe. When observed at any time point, moribund adult mosquitoes (i.e., insects 

incapable of standing, walking, or flying) were scored as dead.  At the 24 hour time point, and to 

a lesser extent at the 48 hour time point, we observed a percentage of the adult mosquito 

population that was moribund.  These individuals did not recover and died by assay end-point. 

The moribund phenotype was negligible at 96 hours (less than 1% of the adult population for any 

replicate dose). LD50 values for test compounds injected into adult mosquitoes were calculated 

by non-linear regression using the sigmoidal dose-response equation in the GraphPad Prism 

software. 
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Results 

In vitro evaluation of AaDOP2 antagonism 

 Our previous studies indicated potential value in pursuing AaDOP2 in a target-first 

approach for developing new insecticides against A. aegypti (Meyer et al., 2012).  We also 

demonstrated the success of utilizing a heterologous cell model, where recombinant AaDOP2 

receptors are expressed in HEK293 cells (HEK-AaDOP2) for identification and pharmacological 

evaluation of novel AaDOP2 ligands (Meyer et al., 2012).  To improve upon our genome-to-lead 

pipeline for novel insecticide discovery, HEK-AaDOP2 cells were used to develop a cell-based 

assay that enabled rapid and efficient study of receptor antagonists.  The Cisbio HTRF cAMP 

dynamic 2 detection methodology was chosen as the assay platform, allowing for the direct 

detection of cAMP in 384-well format, and initial experiments were focused on validating cAMP 

responses to dopamine stimulation using this assay format.  As AaDOP2 is a Gαs-coupled D1-

like dopamine receptor, stimulation with dopamine results in an enhanced level of cAMP (Meyer 

et al., 2012).  As expected, dopamine treatment displayed a concentration-dependent 

enhancement of cAMP accumulation with an EC50 of 950±190 nM (n = 5).  The EC50 of 

dopamine was similar to that determined in the previous [3H]-cAMP-based quantification 

method (Meyer et al., 2012).  Furthermore, the potency of amitriptyline (the prototypical 

mosquito-toxic AaDOP2 antagonist) for inhibition of dopamine-stimulated cAMP in the HEK-

AaDOP2 cells was similar to that previously reported (Tables 1 and 2) (Hill et al., 2013; Meyer 

et al., 2012), demonstrating suitability of the HTRF cAMP detection technology for high-

throughput cell-based pharmacological studies on AaDOP2. 

 Our previous screen of the LOPAC1280 library identified 51 active compounds as 

AaDOP2 antagonists, including several tricyclic antidepressants (Meyer et al., 2012).  
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Importantly, two tricyclic antidepressant compounds, amitriptyline and doxepin, cause 

significant mortality of mosquito larvae in whole-organism bioassays, suggesting the potential of 

tricyclic antidepressants as insecticide lead compounds (Meyer et al., 2012).  To gain an 

understanding of the chemical features that are important for AaDOP2 antagonist activity, 

pharmacological evaluation of additional small molecules that are structurally related to the 

tricyclic leads was carried out in the cell-based assay described above.  Specifically, nine 

tricyclic antidepressants and five antidepressant compounds lacking a tricyclic core were studied 

for their ability to antagonize the cAMP accumulation in response to dopamine treatment (3 μM) 

in HEK-AaDOP2 cells.  All nine tricyclic compounds displayed concentration-dependent 

antagonist activity against AaDOP2 with IC50 values less than 3 μM, whereas compounds 

representing other classes of antidepressants displayed less than 10% inhibition at 3 μM (Figure 

1 and Table 1). 

 To identify novel AaDOP2 antagonists with chemical structures distinct from the tricyclic 

antidepressant ring scaffold, we evaluated concentration-dependent effects of a suite of 

additional active compounds identified in our previous small molecule screen (Meyer et al., 

2012) together with structurally-related compounds, enabling an initial in vitro SAR analysis.  

As performed above, test compounds were studied for their ability to modulate dopamine-

stimulated (3 µM) cAMP accumulation in HEK-AaDOP2 cells (Table 2).  Interestingly, six 

compounds were more potent antagonists than the prototypical AaDOP2 antagonist, 

amitriptyline (Table 2).  Furthermore, asenapine, methiothepin, and cis-(Z)-flupenthixol 

displayed sub-nanomolar IC50 values for inhibition of dopamine-stimulated cAMP in HEK-

AaDOP2 cells (Table 2). 
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 Pharmacological selectivity for the targeted insect over humans and other animals is a 

critical attribute of potential insecticides.  To address this concern, several of the most potent 

AaDOP2 antagonists were evaluated for antagonist activity in HEK293 cells stably expressing 

the human D1 dopamine receptor (HEK-hD1 cells) and compared to the hD1 antagonist, SCH-

23390.  Each compound inhibited 500 nM-dopamine-stimulated cAMP in the HEK-hD1 cells 

and displayed IC50 values between 19 and 13000 nM (Table 3).  However, in contrast to the hD1-

selective antagonist SCH-23390, all of these compounds were more potent antagonists of 

AaDOP2 than hD1, suggesting potential species-selective pharmacological profiles for these 

compounds. 

 

In vivo toxicity of AaDOP2 antagonists: Effects on Aedes aegypti larvae. 

 An important second step in our insecticide discovery effort was the evaluation of the in 

vivo activity of compounds identified and characterized in the cell-based in vitro studies.  We 

developed an A. aegypti larval screen that can be performed in 24-well plate format, allowing 

rapid assessment of in vivo toxicity for compounds identified as potent antagonists in the in vitro 

studies.  This assay was designed to also enable evaluation of speed-to-kill and support 

prioritization of compounds for further study.  Twenty-five compounds were tested using this 

approach (Table 4), and 10 compounds (asenapine, chlorpromazine, benztropine, methiothepin, 

cis-(Z)-flupenthixol, chlorprothixene, loxapine, mianserin, amperozide and clomipramine) 

caused 70-100% larval mortality within 24 hours post-treatment.  These compounds were faster-

acting and caused greater mortality of mosquito larvae at the 24 hour treatment time-point than 

our previously identified lead compound for insecticide development, amitriptyline.  Notably, 

asenapine, chlorpromazine, and amperozide caused greater than 70% mortality of the mosquito 
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population within 30 minutes, and cis-(Z)-flupenthixol, chlorprothixene, mianserin, loxapine and 

methiothepin caused greater than 70% mortality within three hours (data not shown).  We also 

identified five compounds with moderate mosquito toxicity (i.e., 40-70% mortality at 24 hours 

post exposure), and nine compounds with limited or no toxicity to mosquito larvae (i.e., 0-40% 

mortality at 24 hours) (Table 4).  The in vivo larval mortality data show a significant correlation 

with in vitro potency values for antagonism of dopamine-stimulated cAMP in HEK-AaDOP2 

cells (r = -0.770, n = 25, p > 0.0001; Figure 2), providing an important line of evidence that 

AaDOP2 antagonism is linked to larval toxicity. 

 

In vivo toxicity of AaDOP2 antagonists: Effects on adult Aedes aegypti 

 Toxicity to adult female A. aegypti is considered an important property of any lead 

molecule because adult female mosquitoes are the only developmental stage responsible for the 

transmission of disease-causing agents.  Therefore, we developed an adult A. aegypti assay to 

evaluate the effects of AaDOP2 antagonists following introduction to the insect hemocoel via 

microinjection.  Four of the most potent in vitro and/or most efficacious compounds in the larval 

bioassay were assessed for toxicity (LD50) and speed-to-kill in adult mosquito bioassays (Figure 

3 and Table 5).  All compounds tested caused dose-dependent toxicity to adult A. aegypti and 

were capable of providing 100% mortality at all time-points, whereas <6% mortality was 

observed for the saline injected and un-injected controls throughout the 96 h experiments.  Cis-

(Z)-flupenthixol was the most potent compound, having an LD50 of 1.26 nmol/mosquito 

following 24 h exposure (Figure 3).  Chlorpromazine and cis-(Z)-flupenthixol became more 

potent over the course of the four day assay, as LD50 values decreased by ~2-3 fold from the 24 

to 96 h time-points for these compounds.  In contrast, the LD50 values for amitriptyline and 
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amperozide remained relatively stable over the same treatment duration, suggesting that these 

compounds reach their maximum potency earlier than chlorpromazine and cis-(Z)-flupenthixol 

(Table 5). 
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Discussion 

 The active ingredients of the major existing neurotoxic classes of insecticides target 

acetylcholinesterases (organophosphates and carbamates), GABA receptors (organochlorines), 

and sodium channels (pyrethroids) within insect nervous systems (Hemingway and Ranson, 

2000).  Continued efficacy of modern commercial insecticides is threatened by the development 

of insect populations that are resistant to these chemicals (Hemingway and Ranson, 2000), 

emphasizing the urgency of developing insecticides with new modes of action.  Our recent study 

identified the dopamine receptors of A. aegypti as potential targets for yellow fever mosquito 

control (Meyer et al., 2012).  Specifically, larval toxicity was observed for two tricyclic 

antidepressant compounds (amitriptyline and doxepin) that display AaDOP2 antagonism (Meyer 

et al., 2012). 

To better understand the chemical basis of A. aegypti toxicity observed in vivo, 

compounds with activity profiles similar to amitriptyline and doxepin at human targets (i.e., 

GPCRs and/or biogenic amine transporters) were evaluated for in vitro AaDOP2 modulation and 

in vivo efficacy in larval bioassays.  Several known GPCR-targeting ligands, including tricyclic 

antidepressants and antipsychotics, demonstrated potent AaDOP2 antagonism and insecticide 

activity.  However, compounds from other antidepressant classes (e.g., selective serotonin 

reuptake inhibitors and selective norepinephrine reuptake inhibitors) were largely inactive, 

suggesting GPCR modulation, rather than biogenic amine transporters, as a contributing 

mechanism for the observed larval toxicity.  Further validating AaDOP2 as a viable insecticide 

target, our data revealed a significant correlation between the in vitro potency of AaDOP2 

antagonists and the toxicity of these compounds to mosquito larvae in vivo (Figure 2).  However, 

it should be noted that benztropine and amperozide, which caused rapid and high larval mortality 
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(Table 4) had somewhat moderate in vitro potency at AaDOP2 (IC50 values of 340±41 nM and 

570±110 nM, respectively).  Amperozide and benztropine interact with several different 

mammalian GPCR families (Arnt and Skarsfeldt, 1998; Bolden et al., 1992; Kanba and 

Richelson, 1984; U'Prichard et al., 1977), suggesting the possibility that modulation of additional 

A. aegypti GPCRs could contribute to the in vivo toxicity of these compounds.  Alternatively, 

such differences between the in vitro potency and the magnitude of in vivo toxicity for a given 

compound may reflect complex factors that impact in vivo insecticidal activity, including 

differences in the physic-chemical properties of compounds that affect absorption through the 

insect cuticle, dissemination through insect tissues to the target site, and detoxification by insect 

gut and hemolymph enzymes.  Nonetheless, the correlation between the in vitro potencies for 

AaDOP2 antagonism and larval toxicities suggests that optimizing compounds for potency and 

selectivity in vitro may be an efficient way to identify and prioritize new lead compounds.  

The in vitro evaluation of the chosen compounds for modulation of AaDOP2 provided 

preliminary insight into the relationship between chemical structure and the potency of AaDOP2 

antagonism.  One SAR trend suggests that conformational rigidity contributes to the potency of 

AaDOP2 antagonists.  For example, compounds with 6- or 7-membered central rings were 

generally the most potent AaDOP2 antagonists (Tables 1 and 2 and Supplemental Figure 3).  

However, the moderate potency of R59-022, risperidone, benztropine, and amperozide (IC50 

values ranging from 53-570 nM) indicate that the central ring is not essential for antagonist 

activity.  Benztropine was ~22-fold more potent than diphenhydramine, suggesting that 

conformational control of the amine moiety also contributes to the potency of compounds with 

no central ring (Figure 4A).  Another SAR trend suggested that greater lipophilicity may enhance 

AaDOP2 antagonist potency as was observed by the ~3-fold greater potency of amitriptyline 
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over doxepin (Figure 4B).  Furthermore, ligands with tertiary amines (clomipramine, 

imipramine, amitriptyline, and loxapine) were ~5-100-fold more potent than the secondary 

amine analogs of these compounds (norclomipramine, desipramine, nortiptyline, and amoxapine, 

respectively), demonstrating the influence of amine-state on AaDOP2 antagonist potency (Figure 

4C and Supplemental Figure 3).  Also, clomipramine and norclomipramine displayed ~5-6 fold 

more potent IC50 values than imipramine and desipramine, respectively, suggesting that halide 

substituents of aromatic rings within the tricyclic core can increase the potency of the identified 

antagonists (Figure 4C).  Enhancements in AaDOP2 antagonist potency were also apparent when 

considering combinations of chemical properties such as lipophilicity and halide substitution 

(Figure 4C, clomipramine vs. desipramine) or lipophilicity and conformational rigidity (Figure 

4D).  The chemical scaffolds identified above and their key structural features that contribute to 

AaDOP2 antagonism may be utilized to guide further lead optimization studies. 

 The in vitro and in vivo data presented here support the hypothesis that targeting GPCR-

mediated processes is a viable strategy for identifying insecticidal compounds.  However, a 

major challenge associated with this approach is the development of ligands that are selective for 

disruption of biological activity in A. aegypti but not in humans or other higher eukaryotes.  To 

date, all reports of compounds that display both AaDOP2 antagonism and in vivo efficacy are 

known to have biological activity in humans.  Our studies identified compounds that are highly 

selective for targeting AaDOP2 receptors over the human D1 dopamine receptor (Table 3), but 

antipsychotics and tricyclic antidepressants potently interact with other families of mammalian 

GPCRs including histamine, serotonin, adrenergic, and muscarinic receptors (Cusack et al., 

1994; von Coburg et al., 2009).  The development of ligands that selectively target biological 

activity in A. aegypti over humans and other animals could potentially be addressed by using 
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cell-based in vitro assays to screen against panels of human GPCRs.  Also, virtual or in silico 

screening methods are emerging as promising approaches for the study of GPCR modulators 

(Shoichet and Kobilka, 2012).  Such computational methodologies for lead optimization of 

antipsychotics and tricyclic antidepressants are strengthened by recently reported human GPCR 

crystal structures from histamine (Shimamura et al., 2011), serotonin (Wang et al., 2013), 

dopamine (Chien et al., 2010), adrenergic (Rasmussen et al., 2007; Warne et al., 2008), and 

muscarinic (Haga et al., 2012; Kruse et al., 2012) receptor families.  The combination of these in 

vitro and in silico approaches is expected to provide insight into the molecular determinants of 

selectivity for AaDOP2 versus human GPCRs and may ultimately produce mosquito GPCR-

selective small molecules. 

 Pharmacological selectivity considerations are multi-fold, as ligand selectivity for 

AaDOP2 receptors over non-target insects (e.g., honeybees), in addition to selectivity over 

human GPCRs, is also paramount.  Pharmacological screening panels can be assembled for 

invertebrate targets to better understand ligand pharmacology at these receptors.  For example, 

cross-species comparative pharmacological studies of invertebrate dopamine receptor 

modulation can be expanded to include GPCRs from non-target insects.  Furthermore, upon 

genome-mining and cloning of additional biogenic amine receptors (in addition to AaDOP1 and 

AaDOP2), AaDOP2 antagonists can be screened for modulation of other A. aegypti GPCRs 

including muscarinic acetylcholine, serotonin, and octopamine/tyramine receptors (Nene et al., 

2007).  These pharmacological efforts are expected to provide a deeper understanding of small 

molecule modulation of invertebrate GPCRs and may ultimately allow for target-based pesticide 

discovery efforts related to other pest arthropods. 
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 Here we report significant advancements and modifications to our genome-to-lead 

insecticide discovery pipeline (Meyer et al., 2012).  Incorporation of an in vitro HTRF assay 

enabled efficient in vitro pharmacological evaluation and SAR profiling, while offering several 

advantages over the previously utilized CRE-mediated luciferase reporter assay for HTS.  Direct 

measurement of cAMP eliminates false-positives associated with CRE-luciferase reporter assays 

that include cAMP/PKA-independent modulation of CRE-mediated transcription (George et al., 

1997; Hill et al., 2001) or direct modulation of luciferase (Thorne et al., 2010).  Furthermore, the 

HTRF screening platform was robust enough to support future HTS of small molecules for 

AaDOP2 antagonist activity in 384-well format in singlet (i.e., Z’ > 0.5, unpublished 

observations), enabling sufficient throughput to carry out the in vitro pharmacological profiling 

proposed above.  The HTRF screening platform also provides flexibility, as it can be used to 

detect modulation of additional downstream GPCR signaling pathways including ERK1/2 and 

Ca2+/IP3 (Degorce et al., 2009).  Other improvements to our established insecticide discovery 

pipeline for small molecule modulators of AaDOP2 (Meyer et al., 2012) include the enhanced-

throughput larval mosquito bioassay (Table 4) to rapidly assess larval toxicity and the utilization 

of an injection assay to evaluate toxicity in adult A. aegypti. 

 In addition to the antipsychotic and tricyclic antidepressant lead optimization and GPCR 

profiling studies suggested above, HTS of diverse small molecule libraries for the identification 

of AaDOP2 modulators with novel chemical scaffolds may also be a fruitful endeavor.  

Especially enticing is the possibility of screening for allosteric modulators of AaDOP2 receptors, 

as drug discovery campaigns targeting multiple human GPCRs have identified allosteric 

modulators with unmatched specificity and selectivity (Conn et al., 2009; Wootten et al., 2013).  

Allosteric modulators are attractive because the orthosteric sites (i.e., the sites of endogenous 
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ligand binding) are largely conserved between the human D1 and AaDOP2, but our published 

studies suggest that there are opportunities to exploit allosteric sites in the intracellular and 

extracellular loops where sequence similarity between species is reduced (Hill et al., 2013; 

Meyer et al., 2012).  Our emerging understanding of the chemical basis of AaDOP2 receptor 

antagonism, together with advancements in assay throughput, suggest that the diverse molecular 

approaches described above can be combined to expedite the discovery of novel ligands that 

selectively modulate GPCRs of target insects. 

 The present study describes the in vitro pharmacological characterization and in vivo 

efficacy of several AaDOP2 antagonists and demonstrated improvements upon our “genome-to-

lead” pipeline (Meyer et al., 2012).  Specifically, we report the characterization of compounds 

with unparalleled in vitro potency for AaDOP2 inhibition and improved efficacy for A. aegypti 

larval toxicity, and demonstrated toxicity of these compounds to adult mosquitoes.  Collectively, 

our findings provided a major advancement in the development of invertebrate GPCR-targeting 

technology for novel mode-of-action insecticides. 
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Figure Legends 

Figure 1.  Concentration-response curves for selected AaDOP2 antagonists.  Test compounds 

were evaluated for the ability to inhibit dopamine (3 µM)-stimulated cAMP in HEK-AaDOP2 

cells.  Data points represent mean ± S.E.M. for at least three independent experiments. 

 

Figure 2. Correlation analysis of test compounds evaluated for in vitro potency (IC50 values in 

HEK-AaDOP2 cells) and in vivo toxicity (Percent mortality of A. aegypti L3-stage larvae 

following 24 h treatment).  The in vitro potency values for compounds that provided less than 

10% inhibition of dopamine-stimulated cAMP in HEK-AaDOP2 cells were set to 20 µM. 

 

Figure 3.  Concentration-response curves of adult Aedes aegypti female mortality 24 h after 

injection with AaDOP2 antagonists.  Each data point represents mean ± S.E.M. for three 

independent experiments.  No mortality was observed in saline-injected or un-injected controls at 

the 24 h timepoint.   

 

Figure 4.  Structure-activity relationship trends for AaDOP2 receptor antagonists.  Compound 

names and in vitro IC50 values (nM) for AaDOP2 antagonism were included. 
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Tables 

Table 1.  Evaluation of antidepressant compounds from distinct classes for antagonism of the 

AaDOP2 receptor.  The effect of various concentrations of antidepressant compounds was tested 

for inhibition of 3 µM dopamine-stimulated cAMP in HEK-AaDOP2 receptor cells.  Data 

represent the mean ± S.E.M. IC50 values for at least three independent experiments.  

 

Compound IC50±SEM (nM) Chemical Class 

(+)-Butaclamol 260±32 DR antagonist 

Amitriptyline 5.1±1.2 TCA 

Amoxapine 20±8.4 TeCA 

Atomoxetine No Inhibitiona NRI 

Clomipramine 56±18 TCA 

Desipramine 3300±600 TCA 

Doxepin 20±6.2 TCA 

Fluoxetine No Inhibitiona SSRI 

Fluvoxamine No Inhibitiona SSRI 

Imipramine 360±34 TCA 

Norclomipramine 670±35 TCA 

Nortriptyline 140±50 TCA 

Protriptyline 600±250 TCA 

SCH-23390 1300±340 D1DR antagonist 

Trazodone No Inhibitiona SARI 

Venlafaxine No Inhibitiona SNRI 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on October 20, 2014 as DOI: 10.1124/jpet.114.219717

 at A
SPE

T
 Journals on A

pril 18, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


JPET #219717 

34 
 

a Less than 10% inhibition at 3 µM compound 

D1DR, selective D1-like dopamine receptor antagonist; DR antagonist, non-selective dopamine 

receptor antagonist; NRI, norepinephrine reuptake inhibitor; SARI, serotonin antagonist and 

reuptake inhibitor; SNRI serotonin and norepinephrine reuptake inhibitor; SSRI, selective 

serotonin reuptake inhibitor; TCA, tricyclic antidepressant; TeCA, tetracyclic antidepressant  
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Table 2.  Pharmacological characterization of compounds for antagonist activity against the 

AaDOP2 receptor.  The effect of various concentrations of compounds was tested for inhibition 

of 3 µM dopamine-stimulated cAMP in HEK-AaDOP2 receptor cells.  The data represent the 

mean ± S.E.M. IC50 values for at least three independent experiments. 

 

Compound IC50±S.E.M. (nM) 

(+)-Butaclamol 160±31 

Amitriptyline 7.2±1.2 

Amperozide 570±110 

Aripiprazole 6500±770 

Asenapine 0.30±0.06 

Benztropine 340±41 

Chlorpromazine 17±0.88 

Chlorprothixene 1.2±0.39 

Cis-(Z)-flupenthixol 0.35±0.07 

Clozapine 14±2.9 

Cyproheptadine 6.5±1.9 

Diphenhydramine 7500±2800 

Haloperidol 4300±1000 

Ketanserin 3200±360 

Ketotifen 750±180 

Loratadine 18000±1800 

Loxapine 5.9±1.4 
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LY-310,762 3000±820 

Methiothepin 0.25±0.05 

Mianserin 130±24 

Olanzapine 11±2.2 

Pirenperone 680±98 

R59-022 53±13 

Risperidone 150±41 

Ritanserin 500±110 

 

  

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on October 20, 2014 as DOI: 10.1124/jpet.114.219717

 at A
SPE

T
 Journals on A

pril 18, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


JPET #219717 

37 
 

Table 3.  Assessment of compound potency for human D1 receptor antagonism.  The effect of 

various concentrations of compounds was tested for inhibition of 500 nM dopamine-stimulated 

cAMP in HEK-hD1 cells.  The data represent the mean ± S.E.M. IC50 values for four independent 

experiments. 

  

Compound IC50±S.E.M. (nM) Relative fold 

selectivity 

(AaDOP2/hD1) 

 

Amitriptyline 1100±110 170  

Amperozide 13000±680 23  

Asenapine 150±11 500  

Chlorpromazine 750±80 44  

Chlorprothixene 49±8.5 41  

Cis-(Z)-flupenthixol 19±1.7 54  

Cyproheptadine 1400±160 220  

Doxepin 2500±240 130  

Loxapine 300±31 51  

Methiothepin 83±9.0 330  

SCH-23390 1.2±0.20 0.0009  
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Table 4. In vivo toxicity of test compounds to Aedes aegypti larvae.  Data represent the mean ± 

S.E.M. of three independent experiments. 

Compound Larval Mortality (%) 

24 h 48 h 72 h 

Amitriptyline 63±20 87±7 93±3 

Amperozide 93±7 93±7 93±7 

Asenapine  100±0 100±0 100±0 

Benztropine 100±0 100±0 100±0 

Chlorpromazine 100±0 100±0 100±0 

Chlorprothixene 87±9 93±7 100±0 

Cis-(Z)-flupenthixol 100±0 100±0 100±0 

Clomipramine 70±21 93±3 93±3 

Desipramine 30±25 40±30 43±28 

Diphenhydramine 63±12 77±9 83±9 

Fluoxetine 43±30 53±24 53±24 

Fluvoxamine 27±22 33±28 43±24 

Imipramine 53±26 63±20 80±12 

Ketanserin  0±0 0±0 0±0 

Loxapine  97±3 100±0 100±0 

LY-310,762 0±0 3±3 3±3 

Methiothepin 100±0 100±0 100±0 

Mianserin 97±3 97±3 97±3 

Norclomipramine 40±31 63±19 70±15 
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Nortriptyline 43±28 63±19 73±15 

Pirenzepine  0±0 0±0 0±0 

Protriptyline 37±12 43±13 53±23 

SCH-23390 3±3 23±12 47±23 

Tomoxetine 20±15 30±20 30±20 

Venlafaxine 3±3 7±7 13±9 

Control (water only) 0±0 1±1 3±1 
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Table 5. Toxicity of injected AaDOP2 antagonists to four-day-old adult female A. aegypti.  LD50 

values (nmol/mosquito) were calculated from dead and moribund mosquitoes and represent the 

mean ± S.E.M. of three independent experiments.  The average percent mortality was less than 

6% for both injected and un-injected controls throughout the experiment.   

 

Compound 24 h 48 h 72 h 96 h 

Amitriptyline 3.78 ± 0.02 3.39 ± 0.02 3.09 ± 0.02 3.06 ± 0.02 

Amperozide 2.19 ± 0.03 1.98 ± 0.02 1.92 ± 0.07 1.92 ± 0.03 

Chlorpromazine 2.34 ± 0.02 1.97 ± 0.02 1.30 ± 0.03 1.27 ± 0.02 

Cis-(Z)-flupenthixol 1.26 ± 0.01 0.67 ± 0.02 0.46 ± 0.03 0.42 ± 0.02 
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