Abstract
Systemic sclerosis (SSc) or scleroderma, like many fibrotic disorders, lacks effective therapies. Current trials focus on anti-inflammatory drugs or targeted approaches aimed at one of the many receptor mechanisms initiating fibrosis. In light of evidence that a myocardin-related transcription factor (MRTF) and serum response factor (SRF)-regulated gene transcriptional program induced by Rho GTPases is essential for myofibroblast activation, we explore the hypothesis that inhibitors of this pathway may represent novel antifibrotics. MRTF-SRF-regulated genes show spontaneously increased expression in primary dermal fibroblasts from patients with diffuse cutaneous SSc. A novel small-molecule inhibitor of MRTF/SRF-regulated transcription (CCG-203971) inhibits expression of connective tissue growth factor (CTGF), alpha-smooth muscle actin (α-SMA), and collagen 1 (COL1A2) in both SSc fibroblasts and in LPA- and transforming growth factor β (TGFβ)-stimulated fibroblasts. In vivo treatment with CCG-203971 also prevented bleomycin-induced skin thickening and collagen deposition. Thus targeting the MRTF/SRF gene transcription pathway could provide an efficacious new approach to therapy for SSc and other fibrotic disorders.
- The American Society for Pharmacology and Experimental Therapeutics