CONTENTS

Number 1, September, 1914

 III. The Control of the Respiratory Exchange by Heating and Cooling the Temperature Centers. By Henry G. Barbour and Alexander L. 	
Prince	1
Macht	13
III. The Influence of Temperature on the Action of Strophanthin on the Mammalian Heart. By John W. C. Gunn	39
IV. The Condition of the Sugar in the Blood. By C. L. v. Hess and Hugh	
McGuigan V. A Note on the Pharmacological Action of Opium Alkaloids. By D. E.	45
Jackson	57
the Isolated Mammalian Heart, with an Observation upon the Direct	
Action of Lack of Oxygen upon Blood Vessels. By A. N. Richards VII. On the Convulsant Action of Acid Fuchsin in Cardiectomized Frogs	73
after Removal of the Anterior Lymph Hearts. By Don R. Joseph	83
VIII. On the Influence of the Lymph Hearts upon the Action of Convulsant Drugs in Cardiectomized Frogs. II. By John J. Abel and B. B.	
Turner	91
IX. The Vascular Response of the Kidney in Acute Uranium Nephritis— the Influence of the Vascular Response on Diuresis. By William deB. MacNider	123
Number 2, November, 1914	
X. The Action of Certain Esters and Ethers of Choline, and their Relation to Muscarine. By H. H. Dale	1.47
XI. Note on the Properties of Fungi Gathered in France. By William	14/
W. Ford and Nathaniel H. BrushXII. Action of Amanita Phalloides and Other Amanitas upon the Frog's	191
Heart. By William W. Ford and Nathaniel H. Brush	195
XIII. Further Observations on Fungi Including Species of Amanita, Inocybe, Volvaria, and Gyrophragmium. By William W. Ford	205
XIV. Contributions to the Physiology of the Stomach. XVI. The Action	
of the So-Called Stomachics or Bitters on the Hunger Mechanism. By A. J. Carlson, J. Van de Erve, J. H. Lewis and S. J. Orr	209
XV. Uric Acid Concentration of the Blood as Influenced by Atophan and Radium Emanation. By Morris S. Fine and Arthur F. Chace	219
XVI. The Physiological Action of the Oil and Seeds of Croton Elliotianus	
from British East Africa. By J. Theodore Cash and Walter J. Dilling.	235

Number 3, January, 1915

XVII. The Action of Strophanthin upon Suprarenal Secretion. By A. N.	000
Richards and W. J. Wood	283
XVIII. The Action of Conessine and Holarrhenine, the Alkaloids of Holar-	
rhena Congolensis, and also of Oxyconessine. By J. H. Burn	305
XIX. Studies on the Vasomotor Centre. I. The Effects of the Nitrite	
Group. By J. D. Pilcher and Torald Sollmann	323
XX. Studies on the Vasomotor Centre. II. The Action of Strychnin. By	
J. D. Pilcher and Torald Sollmann	331
XXI. Studies on the Vasomotor Centre. III. The Action of Epinephrin.	
By J. D. Pilcher and Torald Sollmann	339
XXII. Studies on the Vasomotor Centre. IV. The Action of Camphor.	
By J. D. Pilcher and Torald Sollmann	345
XXIII. Studies on the Vasomotor Centre. V. The Action of Chloroform.	
By. J. D. Pilcher and Torald Sollmann	349
XXIV. Studies on the Vasomotor Centre. VI. The Action of Cyanide.	
By J. D. Pilcher and Torald Sollmann	361
XXV. Studies on the Vasomotor Centre. VII. The Action of Aconite.	
By J. D. Pilcher and Torald Sollmann	365
XXVI. Studies on the Vasomotor Centre. VIII. The Action of Nicotin.	000
By J. D. Pilcher and Torald Sollmann	360
XXVII. Studies on the Vasomotor Centre. IX. The Action of Spartein.	000
By J. D. Pilcher and Torald Sollmann	272
XXVIII. Studies on the Vasomotor Centre. X. The Action of Phenol.	010
By J. D. Pilcher and Torald Sollmann	277
XXIX. Studies on the Vasomotor Centre. XI. The Action of Cholin.	311
By J. D. Pilcher and Torald Sollman	201
XXX. Studies on the Vasomotor Centre. XII. The Action of Ergot and	991
Its Constituents, Ergotoxin, and Histamin. By J. D. Pilcher and Torald	
	005
Sollmann	385
XXXI. Studies on the Vasomotor Centre. XIII. The Action of Hydras-	
tis; Its Alkaloids, Hydrastin and Berberin; and the Derivatives Hy-	
drastinin and Cotarnin. By J. D. Pilcher and Torald Sollmann	391
XXXII. Studies on the Vasomotor Centre. XIV. The Action of Digi-	
talis and Strophanthus. By J. D. Pilcher and Torald Sollmann	395
XXXIII. Studies on the Vasomotor Centre. XV. The Action of Ether.	
By J. D. Pilcher and Torald Sollmann	401
XXXIV. Studies on the Vasomotor Centre. XVI. The Action of Pitui-	
tary Extract. By J. D. Pilcher and Torald Sollmann	405
XXXV. Studies on the Vasomotor Centre. XVII. The Action of Lactic	
Acid. By J. D. Pilcher and Torald Sollman	409
Number 4, March, 1915	
XXXVI. Note Concerning Helenin. By Paul Dudley Lamson	/19
XXXVII. The Action of Certain Quarternary Ammonium Bases. By J.	410
	117
H. Burn and H. H. Dale	411

CONTENTS V

XXXVIII. Quantitative Observations on Antagonism. By Arthur R.	404
Cushny XXXIX. On the Pharmacology of the Respiratory Center. II. By Arthur	
R. Cushny and Charles C. Lieb	45) 473
Derivatives. By Reid Hunt.	477
XLII. The Influence of Drugs on the Human Sensory Threshold. By E.	
G. Martin, C. M. Grace, and J. H. McGuire	527
No. 2017	
Number 5, May, 1915	
XLIII. The Influence of Temperature and Concentration on the Quantitative Reaction of the Heart to Ouabain. By Torald Sollmann, W. L.	
Mendenhall and J. L. Stingel	533
XLIV. A Signal-Magnet Controller. By C. S. Chase and B. H. Schlomo-	
vitz	561
XI.V. The Toxicity of Rattlesnake Serum and Bile with a Note on the Effect of Bile on the Toxicity of Venom. By William H. Welker and	
John Marshall	563
XLVI. Some Vasomotor Reactions of the Liver with Special Reference	000
to the Presence of Vasomotor Nerves to the Portal Vein. By Charles W. Edmunds	ERC
XLVII. Demonstration by the Use of Arterial Rings of the Inhibitory	JUE
Action of Certain Drugs on the Vaso-Constriction Produced by Epi-	-0
nephrin. By David I. Macht	591
XLVIII. Scientific Proceedings of the American Society for Pharmacology	-0-
and Experimental Therapeutics. Edited by the Secretary	อยู่อ

ILLUSTRATIONS

Effects of heating and cooling corpus striatum upon rectal temperature	•
(Fig. 1)	4
— of cooling and heating corpus striatum (Fig. 2)	5
— of heating corpus striatum for the first ninety minutes after puncture	
(Fig. 3)	7
— of heating corpus striatum preceded and followed by control periods	
(Fig. 4)	8
— of heating corpus striatum (Fig. 5)	9
Heating and cooling when body temperature was influenced by outstretched	
posture (Fig. 6)	11
Action of epinephrin on pig's pulmonary artery (Fig. 1)	17
— of epinephrin on human pulmonary artery (Fig. 2)	17
- of epinephrin in the human pulmonary artery, 49 days after death	
(Fig. 3)	18
Human pulmonary artery (Fig. 4)	20
Action of nicotine (0.01%) on pig's pulmonary artery (Fig. 5)	21
— of digitoxin on pig's pulmonary artery (Fig. 6)	22
Showing the relaxation produced by quinine (1.200) on pig's pulmonary	
(Fig. 7)	22
Action of barium chloride on pig's pulmonary artery (Fig. 8). Sec Errata	23
— of sodium nitrite on the pig's pulmonary artery (Fig. 9). See Errata	24
— of nitroglycerine on pig's pulmonary artery (Fig. 10)	25
— of erythrol tetranitrate on pig's pulmonary artery (Fig. 11)	26
— of amyl nitrite on pig's pulmonary artery (Fig. 12)	26
Showing the relaxation produced by sodium nitrite on the carotid artery	
(Fig. 13)	27
— the relaxation produced by amyl nitrite on pig's carotid artery (Fig. 14)	28
— relaxation of coronary of ox, produced by nitroglycerin (Fig. 15)	28
relaxation of coronary of ox, produced by amyl nitrite (Fig. 16)	29
- action of yohimbrin hydrochloride on the coronary, the internal iliac,	
and the pulmonary arteries of the pig (Fig. 17)	33
Perfusion of rabbit's heart with 1 in 500,000 strophanthin at 30°C. (Fig. 1)	43
— of rabbit's heart with 1 in 500,000 strophanthin at 40°C. (Fig. 2)	43
Dialyzing apparatus not requiring anticoagulants	49
Spinal dog (Fig. 1)	61
Shows bronchial contraction produced by morphine acetate (Fig. 2)	63
— the action of narcotine (Fig. 3)	64
Heroin causes extreme broncho constriction (Fig. 4)	67
Dionin causes marked broncho constriction (Fig. 5)	68
Peronine produced profound bronchial contraction (Fig. 6)	69
Action of camphor on isolated mammalian heart. Experiment 3 (Fig. 1)	80
— of camphor on isolated mammalian heart. Experiment 5 (Fig. 2)	81

Perfusion of dog's hind leg (Fig. 3)	82
showing the route taken by drugs or dyestuffs in passing from the anterior	
lymph hearts to the spinal cord and brain of cardiectomized frogs (Fig. 1)	99
Lymph hearts on action of convulsant drugs (Fig. 2)	103
Route taken by solutions of drugs and dyestuffs in their passage from the	
posterior lymph hearts of cardiectomized frogs to the calcareous saccules	
in the intervertebral foramina (Fig. 3)	105
'racing from the Hürthle manometer, carotid blood pressure, kidney volume,	
signal magnet and time marker (Tracing 1, Experiment 3, Table 1)	129
The tracing is from the same animal as tracing 1 (Tracing 2)	131
Cracing shows the renal vessels to be responsive to caffein (Tracing 3, Experi-	
ment 1, Table 2)	133
- shows that the renal vessels in the anuric animal are responsive to	
adrenalin (Tracing 4, Experiment 1, Table 2)	135
— is from an animal that remained diuretic following morphine-ether as an	
anesthetic (Tracing 5, Experiment 1, Table 3)	136
Collowing the decrease in kidney volume from adrenalin there is a transitory	
slacking in urine flow (Tracing 6, Experiment 1, Table 3)	137
The figure shows the absence of acute swelling of the epithelium (Fig. 1,	
Experiment 3, Table 1)	139
Kidney of an animal anuric following Gréhant's anesthetic (Fig. 2, Experi-	
ment 1, Table 2)	
— of an animal which remained diuretic following morphine-ether (Fig. 3)	141
— of an animal nephritic from uranium nitrate (Fig. 4)	142
Remaining kidney of the same animal after the animal had been subjected to	
Gréhant's anesthetic for one hour (Fig. 5)	
'at: ether. Carotid blood-pressure (Fig. 1)	150
brain destroyed (Fig. 2)	151
— ether. Plethysmograph records from intestine and limb (Fig. 3)	
Drop-record from perfused rabbit's ear; time signal (Fig. 4)	153
Cat: brain destroyed. Artificial respiration (Fig. 5)	
ether. Carotid blood-pressure (Fig. 6)	
— ether. Carotid blood-pressure (Fig. 7)	
— brain destroyed (Fig. 8)	
From same experiment (Fig. 9)	
Cat: brain destroyed (Fig. 10)	
Perfused heart of frog, recorded by suspension-lever (Fig. 11)	
Cat: ether. Contractions of small intestine (Fig. 12)	
oop of rabbit's small intestine in 50 cc. Tyrode's solution (Fig. 13)	
limilar to Figure 13 (Fig. 14)	
lower end of cat's oesophagus in 50 cc. Tyrode's solution (Fig. 15)	
Iterine horn of virgin rat in 50 cc. Tyrode's solution (Fig. 16)	
Cat: ether. Carotid blood-pressure (Fig. 17)	181
action of Amanita phalloides upon frog's heart in perfusion apparatus	
(Chart I)	198
- of Amanita spreta, Amanita junquillea and Amanita porphyria (Chart	100
II)	
— of Amanita muscaria (Chart III).	
— of Amanita phalloides upon frog's heart (Chart IV)	200

Action of the ash of Amanita muscaria upon the frog's heart (Chart VI)	200
— of solutions of the salts found in Amanita phalloides upon the frog's	
heart (Chart V)	
Record of the gastric hunger contractions of J. V. de E. (Fig. 1)	
— of the gastric hunger contraction J. H. L. (Fig. 2). See Errata	213
— of the end of a period of gastric hunger contractions of A. J. C. (Fig. 3)	
Records of the gastric hunger contractions of dogs (Fig. 4)	
— of the gastric hunger contraction of dogs (Fig. 5.)	
Seeds of Croton Elliotianus enlarged (Fig. 1)	
Palatal haemorrhagic spots after Croton Elliotianus (Fig. 2)	246
Haemorrhagic spots chiefly in both gastrocnemii and in left extensor cruris	
(Fig. 3)	247
spots in the oviducts after Croton Elliotianus (Fig. 4)	248
Duodenum of frog (Fig. 5)	249
Contractions of duodenum and colon after oil of Croton Elliotianus (Fig. 6)	
Duodenum; upper colon; lower colon (Fig. 7)	262
Duodenal record (Fig. 8)	263
Duodenum; ileum (Fig. 9)	265
Registering sound in duodenum (Fig. 10)	266
Registration (duodenal) of active contractions (Fig. 11)	268
Isolated strip of cat's longitudinal muscle contracting in blood drawn from	
inferior vena cava above entrance of suprarenal veins. Experiment 12	
(Fig. 1.)	289
Dog. Experiment 4A (Fig. 2)	291
— Experiment 4B (Fig. 3)	291
— Splanchnic nerves cut. Experiment 9 (Fig. 4)	
- Spinal cord cut between fourth and fifth cervical nerves. Experiment	
11 (Fig. 5)	295
Cat. Isolated strip of cat's longitudinal intestinal muscle contracting in	
arterial blood. Experiment 15 (Fig. 6)	297
— 2000 grams. Ether (Fig. 1)	310
— 2400 grams. Brain and spinal cord destroyed (Fig. 2)	311
Conditions as in Figure 2 (Fig. 3)	311
— as in Figure 2 (Fig. 4)	312
Cat, 1700 grams. Ether (Fig. 5)	313
Perfusion of rabbit heart with oxygenated Locke-Ringer solution (Fig. 6)	314
— of rabbit heart with oxygenated Locke-Ringer solution (Fig. 7)	315
— of frog heart with conessine (Fig. 8)	316
Separate tracings from auricle and ventricle of frog heart seen in Fig. 8	
(Fig. 9)	317
Cat, 2000 grams. Ether (Fig. 10)	319
Nitroglycerin on blood pressure and vasomotor centre (Fig. 1)	
Strychnin—nonconvulsive doses by the vasomotor centre (Fig. 1)	
Effect of convulsive doses of strychnin on the vasomotor centre (Fig. 2)	
Paralysis of vasomotor centre by strychnin (Fig. 3)	337
Epinephrin on the vasomotor centre—continuous injection (Fig. 1)	
— on the vasomotor centre (Fig. 2)	
Convulsive doses of camphor on the vasomotor centre (Fig. 1)	34€
Depression of the vasomotor centre by chloroform (Fig. 1)	

Constrictor effect on the vasomotor centre of the administration of chloro-	
form in high concentration (Fig. 2)	354
Chloroform on the vasomotor centre when the tone had been increased by	950
asphyxia (Fig. 3)	
The "Reversal" action (Bayliss) of chloroform on pressor stimuli (Fig. 4)	
Potassium cyanide on the vasomotor centre (Fig. 1)	
Aconite on the vasomotor centre (Fig. 1)	
Nicotin on the vasomotor centre (Fig. 1)	
Spartein on the vasomotor centre (Fig. 1)	
Phenol on the vasomotor centre (Fig. 1)	
Cholin on the vasomotor centre and the blood pressure (Fig. 1)	
Ergamin on vasomotor centre (Fig. 1)	
Hydrastis on vasomotor centre (Fig. 1)	
Fatal doses of strophanthus on blood pressure and vasomotor centre (Fig. 1)	
Ether on the vasomotor centre and respiration (Fig. 1)	
Lactic acid on the vasomotor centre (Fig. 1)	
Cat. Ether. Artificial respiration (Fig. 1)	420
— Ether (Fig. 2)	421
Same as Figure 2 (Fig. 3)	
experiment as Figure 1. Cat now pithed (Fig. 4)	423
Completely pithed cat (Fig. 5)	424
Continuation of Figure 5 (Fig. 6)	425
Completely pithed cat (Fig. 7)	
Loop of rabbit's small intestine (Fig. 8)	
Horn of uterus of virgin guinea-pig (Fig. 9)	
Cat. Ether. Record of bladder-volume and carotid blood-pressure (Fig. 10).	432
Pithed cat. Carotid blood-pressure (Fig. 11)	
Same as Figure 11. (Fig. 12)	435
Pithed cat. Carotid blood-pressure (Fig. 13)	
Chart of the secretion of saliva from Series 1 (Fig. 1)	443
— of the secretion of saliva under atropine and pilocarpine from Series 5	
	449
	453
— in rabbit during the inhalation of a mixture of air and nitrogen (Fig. 2).	
Effect of temperature on M. S. D. of ouabain (Curve 1)	
Magnified average curve of M. S. D. of ouabain (Curve 2)	
Influence of temperature at different concentrations (Fig. 3)	
— of concentration at different temperatures (Fig. 4)	
Signal-magnet controller. Side-view (Fig. 1)	
Metal hood adjustment for all glass syringe (Fig. 3)	
Dog. Blood pressure (B. P.) and liver volume tracing (L. V.) (Fig.1)	
Blood pressure (B. P.) (Fig. 2)	
— Blood pressure (B. P.) (Fig. 3)	
Liver volume (L. V.) (Fig. 4)	
Inferior vena cava (C.) pressure (Fig. 5)	
Portal pressure (Fig. 6)	
Action of epinephrin on pig's pulmonary artery (Fig.1)	
Pig's carotid (Fig. 2)	อษฮ