CONTENTS

NUMBER 1, JANUARY, 1933

,	
I. The Anesthetic Action of Divinyl Oxide on Humans. By Samuel Gelfan and Irving R. Bell	1
II. The Anesthetic Action of Divinyl Oxide in Animals. By C. D.	
Leake, P. K. Knoefel and A. E. Guedel	5
III. The Administration of Drugs into the Cerebral Ventricles of	
Monkeys: Pituitrin, Certain Pituitary Fractions, Pitressin,	
Pitocin, Histamine, Acetyl Choline, and Pilocarpine. By Richard	17
U. Light and Stanley M. Bysshe	11
Cerebrospinal Fluid. Richard U. Light, Courtney C. Bishop	
and Lee G. Kendall	37
V. Tribromethanol (Avertin) Narcosis in the Treatment of Lung	
Edema Induced by Chemical Irritation. By Amos R. Koontz	
and Carl H. Moulton	47
VI. Carbazol Derivatives. I. Local Anesthetics of Urethane Type. By P. K. Knoefel	69
VII. The Pressor Action of Yohimbine and Quebrachine. By S. J.	UĐ
Weinberg	79
VIII. The Influence of Anesthesia on the Cerebrospinal Fluid Pressure	
Response to Histamine and Epinephrine. By S. J. Weinberg	95
IX. The Effect of Sodium Isoamylethylbarbiturate (Sodium Amytal)	
upon the Depressor Action of Brain Extract. By Ralph H.	107
Major, C. J. Weber and J. B. Nanninga	107
asthmatic Agents after Anaphylactic and Histamine Shock in	
the Guinea Pig. By O. W. Barlow and Argyl J. Beams	111
XI. The Chemistry of the Blood and the Cerebrospinal Fluid, with	
Special Reference to Calcium, in the Cataleptoid State Induced	
by Bulbocapnine. The Combined Effect of Bulbocapnine and	
Some Other Drugs. By S. Katzenelbogen and M. C. Meehan	131
NUMBER 2, FEBRUARY, 1933	
XII. Effect on Kidney Function of Ether, Ethylene, Ethylene and	
Sodium Isoamyl-ethyl Barbiturate (Amytal), and Ethylene and	
Tribromethyl Alcohol (Avertin). By Robert P. Walton	141
XIII. Observations on Experimental Spinal Anesthesia. By E. Falkner	
Hill and A. D. Macdonald	191
Anterior Lobe of the Pituitary Body. By H. B. van Dyke and	
Zonja Wallen-Lawrence	163
•	

iv

XV. Studies on Calcium. VI. Some Inter-relationships of the	Cardiac
Activities of Calcium Gluconate and Scillaren-B. By	
L. Lieberman	
XVI. On the Mechanism of Salivary Secretion. By V. E. Her	
and M. H. Roepke	
XVII. Optically Active Hydantoins as Hypnotics. By Harry S	obotka,
S. M. Peck and Jos. Kahn.	
XVIII. A Contribution to the Pharmacology of Adonis Vernal	
Robert A. Hatcher and Harvey B. HaagXIX. Effect of Therapeutic Doses of Sodium Bicarbonate on the	
neys. By Lynne A. Hoag, Carl E. Weigele, Haskell 7	
Eleanor Marples and Katharine Woodward	
XX. Distribution of Thoracic Sympathetic Motor Fibers in th	
sions of the Heart Determined by the Action of Adren	
Isolated Strips from the Turtle's Heart. By Charles W.	
and Karl E. Maneval	
XXI. The Site of the Pressor Action of Dimethylguanidin Su	
By Harry Goldblatt and Howard T. Karsner	
XXII. Piperidinopropanediol Di-phenylurethane Hydrochloride,	a New
Local Anesthetic. By T. H. Rider	255
N 0 M 1000	
Number 3, March, 1933	
XXIII. The Inhibition of Oestrus by Extracts of the Anterior Lobe	
Pituitary Body. By Marie C. d'Amour and H. B. van	
XXIV. Notes on the Poisonous Secretions of Twelve Species of	
By K. K. Chen and A. Ling Chen	281
XXV. Relative Susceptibility of the Nebulous Toad (Bufo va	
and the Leopard Frog (Rana pipiens) to Different Subs By K. K. Chen and A. Ling Chen	
XXVI. The Physiological Action of the Principles Isolated from	
Secretion of the Common European Toad (Bufo bufo	
By K. K. Chen, H. Jensen and A. Ling Chen	
XXVII. Effect of Quinine on the Parasympathetic and Sympathetic	
vation of the Salivary Glands. By George W. Stavraky	
XXVIII. The Comparative Physiological Actions of dl-\$-Phenyliso	
amines. I. Pressor Effect and Toxicity. By Gordon A.	
XXIX. The Action of Pituitary Extract upon the Blood Pressure	
Normal Unanesthetized Animal and the Effects of Ep	
or Adrenaline Thereupon. By K. I. Melville	
XXX. The Action on Cardiac Musculature and the Vagomime	
havior of Adenosine. By Alfred M. Wedd and Wallace C). Fenn. 365
Number 4, April, 1933	
XXXI. Comparative Pharmacology of some Condensation Prod	ucts of
Phenols with Aliphatic Aldehydes. An Inquiry into	
pharmacodynamic Relationships. By David I. Mac	
Wilton C. Harden	277

contents v

XXXII. The Excretion of Morphine by Normal and Tolerant Dogs. By	
William A. Wolff, Cecilia Riegel and Edith G. Fry	391
XXXIII. The Action of Morphine on the Mammalian Circulation. By	
Carl F. Schmidt and A. E. Livingston	411
XXXIV. The Relation of Dosage to the Development of Tolerance to Mor-	
phine in Dogs. By Carl F. Schmidt and A. E. Livingston	443
XXXV. A Note Concerning the Actions of Pseudomorphine. By Carl F.	
Schmidt and A. E. Livingston	473

ILLUSTRATIONS

Minimal anesthetic range of divinyl oxide and ether by inhalation in mice	
(Fig. 1)	ξ
Time required to anesthetize mice by inhalation of the minimal certain	
anesthetic concentrations of divinyl oxide and ether respectively (Fig. 2).	10
Induction of, and recovery from divinyl oxide anesthesia in a dog. Admin-	
istration by Waters carbon dioxide absorption technique with Guedel-	
Waters endotracheal cannula and oxygen flow of 200 cc. per minute	
through divinyl oxide (Fig. 3)	11
— of ether anesthesia in same dog as in figure 3. Administration by	
Waters carbon dioxide absorption technique with closed endotracheal	
cannula and oxygen flow of 200 cc. per minute through ether (Fig. 4)	12
— of divinyl oxide anesthesia in same dog as figures 3 and 4. Administra-	
tion by carbon dioxide absorption technique with closed endotracheal	
cannula and oxygen flow of 50 cc. per minute through divinyl oxide	
(Fig. 5)	13
Microphotographs of lungs of rabbits killed four and one-half hours after	
gassing (Fig. 1)	54
— of lungs of dogs killed five hours after gassing (Fig. 2)	59
— of lungs of dogs following gassing (Fig. 3)	59
of sections from each lobe of the lungs of 2 dogs killed forty-eight hours	
after gassing (Fig. 4)	61
Relation of time of onset of anesthesia of sensory fibers of frog sciatic to	
concentration of anesthetic (Fig. 1)	72
of time of onset of anesthesia of sensory fibers of frog sciatic to concen-	
tration of anesthetic (Fig. 2)	73
Dog. Ether anesthesia. Injection in femoral vein (Fig. 3)	76
Pressor action of yohimbine and quebrachine (Fig. 1)	82
- action of yohimbine and quebrachine (Fig. 2)	83
action of yohimbine and quebrachine (Fig. 3)	86
action of yohimbine and quebrachine (Fig. 4)	87
action of yohimbine and quebrachine (Fig. 5)	90
Cerebrospinal fluid pressure (Fig. 1)	99
Transient depression in blood pressure produced by a single intravenous	100
	108
	128
	146
	147
	148
• • • •	149
Experimental spinal anesthesia (Fig. 1)	
— spinal anesthesia (Fig. 2) 1	155

Experimental spinal anesthesia (Fig. 3)	
spinal anesthesia (Fig. 4)	
Gonad-stimulating principle of pituitary body (Fig. 1)	175
Modification of Trendelenburg's apparatus (as used in Professor Van Dyke's	
laboratory) (Fig. 1)	184
Foster's apparatus for maintaining an even rate of injection (as used in	
Professor Van Dyke's laboratory) (Fig. 2)	
Record of a rapid injection in an 8-kgm. dog of calcium gluconate (Fig. 3)	188
— of rapid injection of Scillaren-B in a 7-kgm. dog (Fig. 4)	
On the mechanism of salivary secretion (Fig. 1)	
the mechanism of salivary secretion (Fig. 2)	201
— the mechanism of salivary secretion (Fig. 3)	203
— the mechanism of salivary secretion (Fig. 4)	203
— the mechanism of salivary secretion (Fig. 5)	203
— the mechanism of salivary secretion (Fig. 6)	204
Sino-auricular strip and left auricular apex strip in Ringer's solution (Fig. 1).	240
Recording from above down the sinus, the left auricular tip, and the right	
auricular tip (Fig. 2)	242
Illustrating the decrease of limb volume which accompanied the rise of blood	
pressure that followed a rapid intravenous injection of a large dose of	
dimethylguanidin sulphate. Limb nerves intact (Fig. 1)	250
Great increase of blood pressure and decrease of limb volume following the	
rapid injection of 0.4 gram dimethylguanidin sulphate (Fig. 2)	251
Same dog as in figure 2. Smaller rise of blood pressure, and practically no	
decrease of limb volume following the injection of 0.4 gram dimethyl-	
guanidin which was preceded by an intravenous injection of 12 mgm. of	
ergotoxin (Fig. 3)	251
Great increase of blood pressure and decrease of limb volume following the	
rapid injection of 0.3 gram of dimethylguanidin sulphate in a dog with	
limb nerves and vagi sectioned (Fig. 4)	
Map of world showing cities from which our toads and Ch'an Su were shipped	
(Fig. 1)	
Action of fowlero-bufotenine on frog's and toad's hearts (Fig. 1)	300
Absorption bands of ergosterol (Fig. 1)	
Electrocardiographic changes caused by vulgaro-bufotoxin (Fig. 2)	
Pressor action of vulgaro-bufotenine and its comparison with other bufo-	
tenines (Fig. 3)	
Effect of intravenous injection of 0.2 gram of quinine hydrochloride on	
systemic blood pressure, on blood flow through submaxillary gland and	
on secretion of saliva in that gland (Fig. 1)	322
Separation into two parts of secretion activated by chorda tympani stimu-	
lation under influence of repeated doses of quinine (Fig. 2)	324
Second stage of quinine poisoning (Fig. 3)	326
Effect of stimulation of chorda tympani in fresh place after first stimulation	
ceased to activate a secretion (Fig. 4)	
Very small first phase of chorda tympani secretion and accordingly slight	
vasodilatation during stimulation (Fig. 5)	
Submaxillary gland poisoned with quinine (Fig. 6)	

Action of epinephrine, phenylethylamine and phenylisopropylamine (Fig. 1).	344
- of epinephrine, hydroxyphenylethylamine and hydroxyphenyliso-	
propylamine (Fig. 2)	340
of epinephrine, dihydroxyphenylethylamine and dihydroxyphenyliso-	
,	347
	350
•	358
	359
— pressure tracings (Fig. 5)	36
llustrating action of adenosine on turtle auricle (Fig. 1)	36
Effect of adenosine on strips of dog auricle (Fig. 2)	363
Comparison of oxygen consumption by cardiac and skeletal muscle of frog	90
	370
llustrating depressant effect of adenylic acid on rabbit auricle (Fig. 4)	37
Action of adenosine on rabbit auricle before and after atropine (Fig. 5)	373
Dilator action of adenosine on vessels constricted by acetyl choline in per-	07
fused heart of rabbit (Fig. 6)	374
Rate of excretion: Morphine in blood and urine following a subcutaneous	40
injection of hydrochloride (Fig. 1)	40
Depressor effect of morphine in unanesthetized dog (Fig. 1)	410
Absence of depressor effect from intravenous injection of morphine in rodents	
(Fig. 2)	41
Depressor effect of morphine in pithed animals (Fig. 3)	419
'Vasomotor perfusion' of kidney: effect of morphine upon vasomotor	
center (Fig. 4)	42
Effect of morphine upon heart in situ (Fig. 5)	42
— of morphine on splanchnic and limb vessels (Fig. 6)	42
— of intra-arterial injection of morphine upon splanchnic and limb vessels	
(Fig. 7)	42
Absence of depressor and vasodilator effect from morphine in tolerant dog	
(Fig. 8)	43
Effect of repeated intravenous injections of morphine in normal dog (Fig. 9).	43
'Acute tolerance' to dilator effects of morphine (Fig. 10)	43
— tolerance" to depressor effect of morphine in spinal dog (Fig. 11)	43
tolerance" to depressor, vasomotor and respiratory effects of morphine	
(Fig. 12)	43
Absence of circulatory tolerance forty-eight hours after last injection (Fig. 1).	45
- of circulatory tolerance in chronically morphinized dog twelve days	
after last injection (Fig. 2)	45
loss of circulatory tolerance within twenty-four hours after daily injection	
(Fig. 3)	46
Vasodilator effect of pseudomorphine (Fig. 1)	47
Effect of pseudomorphine on isolated mammalian heart (Fig. 2)	47
'Acute tolerance' to pseudomorphine in nithed animal (Fig. 3)	47