CONTENTS ## Number 1, May, 1930 | I. The Action of the "Parotid" Gland Secretion of Bufo regularis. By David Epstein and J. W. C. Gunn | 1 | |---|------------| | II. Studies on the Colloid Chemistry of Antisepsis and Chemotherapy. III.
The Ultramicroscopic Examination of Neoarsphenamine and of Certain
Antiseptics, and Their Effects upon Protein Solutions. By Arthur D. | | | Hirschfelder and Harold N. Wright | 13 | | felder IV. On the Pharmacological Action of Various Aromatic-Aliphatic Lactones. II. Studies on Chemical Constitution and Pharmacological Action. By W. F. von Oettingen | 39
59 | | V. Pharmacological Studies of Twenty-Three Isomeric Octyl Alcohols. By David I. Macht and Harriet P. Leach | 71 | | metric Methods to Digitalis Standardization. By William Nyiri and Louis DuBois | 99 | | Calcium Ions, Hydrogen Ions and Digitalis. By William Nyiri and Louis DuBois. | 111 | | Number 2, June, 1930 | | | VIII. Some Ob Ivations on the Suitability of Amytal as an Anesthetic for | | | Laborato nimals. By R. C. Garry. IX. Continu Recording Pens. By J. H. Thompson and A. T. Wilson. X. An Appa for Continuously Recording Human Blood Pressure. By | 129
137 | | J. H. Tienpson | 141 | | and D. T. Hughson | 153 | | XII. A Comparison of the Premedication Values of Several Barbituric Acid
Derivatives in Relation to Nitrous Oxide Anesthesia. By M. S. Stormont, | | | XII. A Comparison of the Premedication Values of Several Barbituric Acid Derivatives in Relation to Nitrous Oxide Anesthesia. By M. S. Stormont, I. Lampe and O. W. Barlow | | | XII. A Comparison of the Premedication Values of Several Barbituric Acid Derivatives in Relation to Nitrous Oxide Anesthesia. By M. S. Stormont, I. Lampe and O. W. Barlow. XIII. Studies on the Duration of Action of Drugs. I. Analgesics and Hypnotics. By Theodore Koppanyi and Abraham Lieberson. XIV. Studies on the Duration of Action of Drugs. II. Mydriatic Actions of Epinephrine and Atropine. By Theodore Koppanyi and Abraham | 177 | | XII. A Comparison of the Premedication Values of Several Barbituric Acid Derivatives in Relation to Nitrous Oxide Anesthesia. By M. S. Stormont, I. Lampe and O. W. Barlow XIII. Studies on the Duration of Action of Drugs. I. Analgesics and Hypnotics. By Theodore Koppanyi and Abraham Lieberson XIV. Studies on the Duration of Action of Drugs. II. Mydriatic Actions of | 177
187 | | | 209 | |--|-------------| | XVII. The Estimation of Digitalis by Pigeon-Emesis and Other Methods.
By J. H. Burn | 221 | | XVIII. Detoxification of Nicotine by Ultraviolet Rays. By A. J. Pacini and | | | | 241 | | Number 3, July, 1930 | | | XIX. The Scientific Proceedings of the American Society for Pharmacology and Experimental Therapeutics. Twenty-First Annual Meeting, Held at Chicago, Ill., March 26, 27, 28, 29, 1930 | 245 | | Rate and Respiration in Dogs. By Charles M. Gruber and William B. Kountz | 275 | | XXI. Ephedrine on the Ureter. By George B. RothXXII. The Action of Alcohol, Caffeine, and Tobacco, on the Cardiac Output | 301 | | (and Its Related Functions) of Normal Man. By Arthur Grollman XXIII. The Testing of Local Anesthetics. By T. H. Rider | 313 | | XXIV. Pharmacological Note on Carbo Ligni and Carbo Animalis. By | 329 | | David I. Macht | 343 | | XXV. Biological and Chemical Studies of the Relationship between Arsenic and Crystalline Glutathione. By Sanford M. Rosenthal and Carl Voegtlin | 347 | | XXVI. Studies on Crystalline Insulin. XI. Does Insulin Cause an Initial | | | Hyperglycemia? By E. M. K. Geiling and A. M. De Lawder | 369 | | Number 4, August, 1930 | | | XXVII. The Action of an Alkaloidal Product from the Leaf of Solanum | | | Pseudocapsicum, L. By J. M. Watt, H. L. Heimann and E. Meltzer
XXVIII. The Prevention of Acute Intoxication from Local Anesthetics. By | 387 | | P. K. Knoefel, R. P. Herwick and A. S. Loevenhart | 397 | | XXIX. Chemotherapy of Quinoline Compounds. Part I. A Preliminary
Report on the Action of Certain Quinoline Compounds on Paramoecia.
By Upendranath Brahmachari, Tarapada Bhattacharyya, Radhakrishna | | | Banerjea and Bibhuti Bhusan Maity | 413 | | XXX. Idiosyncrasy to Quinine, Cinchonidine and Ethylhydrocupreine and Other Levorotatory Alkaloids of the Cinchona Series: Further Chemical Delimitation of the Idiosyncrasy; Alteration in Sensitiveness. By W. | | | T. Dawson and Francis A. Garbade | 417 | | XXXI. Studies in Cancer Chemotherapy. IX. The Reaction of the Blood in Cancer. By Fritz Bischoff, M. Louisa Long and Elsie Hill | 495 | | XXXII. Some Observations on the Effect of Pitressin upon the Cardiovascu- | 720 | | lar System. By Charles M. Gruber and William B. Kountz | 435 | | XXXIII. IV. The Effect of Epinephrine upon the Rate of Contraction and upon the Conduction Time of Peristalsis and Antiperistalsis in Excised | | | Ureters. By Charles M. Gruber | 44 9 | | XXXIV. Local Anesthetics Derived from Dialkylamino Propandiols. I. Phenylurethans. By T. H. Rider. | 457 | | XXXV. A Study of the Innervation of the Pylorus of the Terrapin. By | | | Nolan I. Kaltreider | 469 | ## ILLUSTRATIONS | Perfusion of the isolated heart of the frog with a 1:8000 solution of Transvaal | | |--|-----------| | toad secretion (Fig. 1) | 3 | | The effect of an intravenous injection of toad secretion (3 mgm. per kilogram) | | | in the cat (Fig. 2) | 5 | | — effect of a solution of toad secretion (1:50,000) on the isolated cat's heart | | | (Fig. 3) | 7 | | — effect of toad secretion on the isolated intestine of the cat (Fig. 4) | 8 | | Drawing showing the appearance of a cholesterol suspension and of egg albu- | | | min, viewed with the ultramicroscope (Fig. 1) | 17 | | Aggregation of egg albumin by antiseptics, viewed with the ultramicroscope | | | (Fig. 2) | 20 | | Effect of changes in H-ion concentration upon the flocculation of neoarsphe- | | | namine (Fig. 3) | 27 | | Neoarsphenamine and its reaction with egg albumin (Fig. 4) | 28 | | Effects of neoarsphenamine and mercurochrome on rabbit's blood plasma | | | (Fig. 5) | 31 | | Studies on the colloid chemistry of antisepsis and chemotherapy (Fig. 1) | 47 | | on the colloid chemistry of antisepsis and chemotherapy (Fig. 2) | 48 | | — on the colloid chemistry of antisepsis and chemotherapy (Fig. 3) | 50 | | on the colloid chemistry of antisepsis and chemotherapy (Fig. 4) | 52 | | Ichthyometer (Fig. 1) | 78 | | Ichthyogram (Fig. 2) | 79 | | Helicogram. Effect of octyl alcohol XXI (Fig. 3) | 83 | | Cat, 2.6 kgm. Ether anesthesia (Fig. 4) | 86 | | Vas deferens of rat. Effect of octyl alcohol I (Fig. 5) | 88 | | Uterus of the guinea pig (Fig. 6) | 89 | | Relation of ouabain to calcium (Fig. 1) | 116 | | Toxic effect of 0.002 per cent CaCl ₂ , subsequent to administration of 0.002 mg. | | | per cent ouabain (Fig. 2) | 117 | | Hastening and reinforcing effect of toxic digitan action by subsequent admin- | | | | 118 | | Almost immediate toxic effect of 0.08 cc. Digitan intravenously subsequent to | | | | 119 | | Typical digitalis poisoning in slightly acid menstruum (Fig. 5) | 122 | | Male cat (Fig. 1) | 130 | | rabbit (Fig. 2) | 131 | | Perfusion of frog's heart with Greene's frog-heart cannula (Fig. 3) | 132 | | | 134 | | | 139 | | A, reservoir with, leading from it, B , capillary tube, enclosed in C , the straw, | | | which is nipped in D , a small half-cylinder of metal, chilled at E , the | | | fulcrum, to fit the bearing-cones (Fig. 2) | 139 | | A, the float proper, held central by B , the manometer tube cover, C , the ink | | |--|-----| | reservoir with D , the capillary leading from it to E , the pen held in F , | | | | 139 | | Armlet for use with the Thompson sphygmanograph (Fig. 1) | | | Wristlet for use with the Thompson sphygmanograph (Fig. 2) | | | Photograph of the manometer and portable case (Fig. 3) | 145 | | Typical human blood pressure tracing recorded by the sphygmanograph (Fig. 4) | 146 | | Rise of blood pressure in human subject resulting from subcutaneous injection (five minutes previous to beginning of record of ephedrine hydrochloride). | | | Time intervals of five minutes (Fig. 5) | 147 | | Fall of blood pressure in human subject during inhalation of amyl nitrite | | | (Fig. 6) | 147 | | A comparison of the premedication values of several barbituric acid deriva- | | | tives in relation to nitrous oxide anesthesia (Fig. 1) | 166 | | — comparison of the premedication values of several barbituric acid deriv- | | | atives in relation to nitrous oxide anesthesia (Fig. 2) | 167 | | Persistence of mydriasis after graded intravenous injections of epinephrine | | | | 189 | | — of mydriasis after graded intravenous injections of epinephrine in two | | | cats. Small doses (0.00006 to 0.0125 mgm.) (Fig. 2) | 190 | | of mydriasis in the left pupil after the injection of epinephrine into the | | | | 191 | | Comparison of the difference in the duration of mydriasis in the right pupil | | | after a given dose of epinephrine injected into the femoral vein (A) and | | | into the left common carotid artery (B). Same cat as in figure 3 (Fig. 4). | 192 | | Persistence of mydriasis after graded intraocular injections of epinephrine | | | , , , | 193 | | • | 196 | | | 197 | | Diagram showing arrangement of perfusion apparatus. Relative size of | 011 | | heart and manometer not drawn to scale (Fig. 1) | 211 | | Optical pressure curves from left ventricle showing depressing effect of KCl | | | injection limited to right ventricle. B , 15 seconds; C , 30 seconds; D , 45 seconds and E , 2 minutes after injection. Time $\frac{1}{6}$ second (Fig. 2) | ດາຈ | | Curves same as figure 2, showing stimulating effects of CaCl ₂ . B, 1 minute; | 213 | | | 213 | | - same as figure 2, showing stimulating effects of 0.5 cc. of a 1:10,000 | 210 | | epinephrin solution. B, 15 seconds; C, 30 seconds; D, 1 minute; and E, | | | | 213 | | — same as figure 2, showing stimulating and toxic effects of strophanthin | 210 | | (1 mgm.). B, 1 minute; C, 3 minutes; D, 4 minutes; E, 9.5 minutes; F, | | | 12 minutes; G, 26.5 minutes; H, 27 minutes; I, 27.5 minutes after adminis- | | | | 213 | | Optical pressure curves from left ventricle illustrating depressant effects of | | | The second secon | 216 | | Curves same as in figure 6, showing depressant effects of 3 cc., 1:200 chloral | | | | 216 | | Curves same as in figure 6, showing depressant effects of 2 cc., 1:10,000 | | |--|-------------| | ephedrine. A, control (Fig. 8) | 216 | | — same as in figure 6, showing depressant effect of 2 cc., 1 per cent quinidine | | | sulphate solution (Fig. 9) | | | The estimation of digitalis by pigeon-emesis and other methods (Fig. 1) \dots | | | estimation of digitalis by pigeon-emesis and other methods (Fig. 2) | | | estimation of digitalis by pigeon-emesis and other methods (Fig. 3) | | | estimation of digitalis by pigeon-emesis and other methods (Fig. 4) | 231 | | Graph illustrating the normal variations in blood pressure in unanesthetized | | | dogs (Fig. 1) | 280 | | Curve plotted from the data obtained from a 9-kgm. dog under chloretone | | | anesthesia (Fig. 2) | 282 | | obtained from a 6-kgm. dog. Local anesthesia. Upper record is that of | | | the respiration with, tambour and pneumograph, the middle record the | | | blood pressure with membrane manometer and the lower record the time | | | | 283 | | - plotted from the data obtained from a non-anesthetized 6.5-kgm. dog | | | (Fig. 4) | 285 | | 9.5-kgm. dog. Local anesthesia. Top record the blood pressure with mem- | | | brane manometer, and bottom record the time interval in fifteen seconds | 000 | | (Fig. 5) | 286 | | Curve plotted from the data obtained from an experiment upon an unanesthe- | 000 | | tized 9.5-kgm. dog (Fig. 6) | 288 | | 6-kgm. dog. Local anesthesia, both vagi cut four hours earlier. Top record | | | the blood pressure with membrane manometer, bottom record the time interval in fifteen seconds (Fig. 7) | 200 | | Curve plotted from the data obtained from an experiment upon an 8-kgm. | 209 | | dog. Both vagi cut two hours previously. Local anesthesia (Fig. 8) | 200 | | 14-kgm. dog under ether anesthesia. Both adrenal glands excised. Top | 290 | | curve that of the blood pressure with a membrane manometer, bottom | | | curve that of the blood pressure with a membrane manometer, bottom curve the time interval in fifteen seconds (Fig. 9) | 909 | | 12-kgm. dog. Local anesthesia. Both carotid arteries had been tied off | 232 | | under ether anesthesia three hours before this record was made. Top | | | curve the blood pressure with membrane manometer and bottom record | | | the time in fifteen-second intervals (Fig. 10) | 294 | | Effect of 10 mgm. of ephedrine sulphate (Lilly & Co.) in 100 cc. of alkaline | | | Locke-Ringer on the excised dogs' ureter (Fig. 1) | 305 | | — of 20 mgm. of ephedrine hydrochloride (Read) on the excised ureter of | | | dog (Fig. 2) | 305 | | - of 80 additional milligrams of ephedrine hydrochloride (Read) on the | | | same segment of dog's ureter which was used to obtain figure 2 (Fig. 3) | 306 | | - of 20 mgm. of ephedrine hydrochloride (Read) in 100 cc. of alkaline | | | Locke-Ringer, on a quiescent segment of dogs' ureter (Fig. 4) | 307 | | — of 0.1 mgm. of epinephrine (Parke Davis & Co.) on the same segment | | | which was used for obtaining figure 4, the Locke-Ringer having been | | | changed seven minutes previously (Fig. 5) | 3 08 | | — of 10 mgm. of ephedrine sulphate (Lilly & Co.) on a beating segment of | | | nigg' ureter (Fig. 6) | 308 | | Prevention of the local inflammatory reaction from N/100 arsenoxide when N/10 glutathione is simultaneously injected (right ear) (Fig. 1) | 256 | |--|------------| | Biological and chemical studies of the relationship between arsenic and | 550 | | crystalline glutathione (Chart 1) | 360 | | — and chemical studies of the relationship between arsenic and crystalline | | | glutathione (Chart 2) | 360 | | — and chemical studies of the relationship between arsenic and crystalline | | | | 361 | | —— and chemical studies of the relationship between arsenic and crystalline | | | | 361 | | Blood sugar effects of insulin preparations at various stages of purification | | | | | | Studies on crystalline insulin (Fig. 2) | | | Cats. Electrocardiogram. Lead II. Time $\frac{1}{5}$ and $\frac{1}{25}$ second (Fig. 1) | | | | 390 | | | 391 | | The action of an alkaloidal product from the leaf of Solanum pseudocapsicum, | | | | | | | | | | 406 | | Some observations on the effect of pitressin upon the cardiovascular system | 441 | | (= -0: =/: : : : : : : : : : : : : : : : : : | 441 | | observations on the effect of pitressin upon the cardiovascular system | 441 | | (Fig. 2) | 441 | | · · · · · · · · · · · · · · · · · · · | 449 | | (Fig. 3) | 443 | | | 444 | | | 452 | | Excised pig ureter kept in ice cold Locke's solution 24 hours. Bladder half of | 402 | | | 453 | | Showing the stimulating effect of pilocarpine, the inhibiting action of ephe- | 400 | | drine and epinephrin and the antagonistic action of atropine on the | | | | 473 | | Illustrating the effect of ephedrine on the tonus of the pylorus and lack of | 1.0 | | | 473 | | Showing the characteristic rhythmic contractions with no alteration of the | | | The state of s | 475 | | — the typical response of the pyloric sphincter to epinephrin, when not | | | | 475 | | no effect of adrenalin or ephedrine on the rhythmic contractions and on | | | the tonus of the pylorus (Fig. 5) | 475 | | Illustrating the stimulating effect of epinephrin and ephedrine on the tonus | | | of the pylorus as observed in two sphincters (Fig. 6) | 475 | | Showing the typical effect of ephedrine on quiescent, relaxed sphincters not | | | | 475 | | the inhibiting effect of adrenalin and ephedrine on both the rhythmic | | | contractions and tonus of the small intestine, initiated by pilocarpine | | | (Fig. 8) | 475 |