Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Review ArticleSpecial Section on Quantitative Systems Pharmacology: A Foundation to Establish Precision Medicine—Minireview

Quantitative Systems Pharmacology and Machine Learning: A Match Made in Heaven or Hell?

Marcus John Tindall, Lourdes Cucurull-Sanchez, Hitesh Mistry and James W.T. Yates
Journal of Pharmacology and Experimental Therapeutics October 2023, 387 (1) 92-99; DOI: https://doi.org/10.1124/jpet.122.001551
Marcus John Tindall
Department of Mathematics and Statistics and Institute of Cardiovascular and Metabolic Research, University of Reading, Whiteknights, Reading, United Kingdom (M.J.T.); GSK Medicines Research Centre, Stevenage, United Kingdom (L.C.-S., J.W.T.Y.); and Pharmacy, Division of Pharmacy and Optometry, University of Manchester, Oxford Road, Manchester, United Kingdom (H.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Marcus John Tindall
Lourdes Cucurull-Sanchez
Department of Mathematics and Statistics and Institute of Cardiovascular and Metabolic Research, University of Reading, Whiteknights, Reading, United Kingdom (M.J.T.); GSK Medicines Research Centre, Stevenage, United Kingdom (L.C.-S., J.W.T.Y.); and Pharmacy, Division of Pharmacy and Optometry, University of Manchester, Oxford Road, Manchester, United Kingdom (H.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hitesh Mistry
Department of Mathematics and Statistics and Institute of Cardiovascular and Metabolic Research, University of Reading, Whiteknights, Reading, United Kingdom (M.J.T.); GSK Medicines Research Centre, Stevenage, United Kingdom (L.C.-S., J.W.T.Y.); and Pharmacy, Division of Pharmacy and Optometry, University of Manchester, Oxford Road, Manchester, United Kingdom (H.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James W.T. Yates
Department of Mathematics and Statistics and Institute of Cardiovascular and Metabolic Research, University of Reading, Whiteknights, Reading, United Kingdom (M.J.T.); GSK Medicines Research Centre, Stevenage, United Kingdom (L.C.-S., J.W.T.Y.); and Pharmacy, Division of Pharmacy and Optometry, University of Manchester, Oxford Road, Manchester, United Kingdom (H.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

As pharmaceutical development moves from early-stage in vitro experimentation to later in vivo and subsequent clinical trials, data and knowledge are acquired across multiple time and length scales, from the subcellular to whole patient cohort scale. Realizing the potential of this data for informing decision making in pharmaceutical development requires the individual and combined application of machine learning (ML) and mechanistic multiscale mathematical modeling approaches. Here we outline how these two approaches, both individually and in tandem, can be applied at different stages of the drug discovery and development pipeline to inform decision making compound development. The importance of discerning between knowledge and data are highlighted in informing the initial use of ML or mechanistic quantitative systems pharmacology (QSP) models. We discuss the application of sensitivity and structural identifiability analyses of QSP models in informing future experimental studies to which ML may be applied, as well as how ML approaches can be used to inform mechanistic model development. Relevant literature studies are highlighted and we close by discussing caveats regarding the application of each approach in an age of constant data acquisition.

Significance Statement We consider when best to apply machine learning (ML) and mechanistic quantitative systems pharmacology (QSP) approaches in the context of the drug discovery and development pipeline. We discuss the importance of prior knowledge and data available for the system of interest and how this informs the individual and combined application of ML and QSP approaches at each stage of the pipeline.

Footnotes

    • Received December 15, 2022.
    • Accepted July 26, 2023.
  • This work was undertaken without financial support.

  • No author has an actual or perceived conflict of interest with the contents of this article.

  • dx.doi.org/10.1124/jpet.122.001551.

  • Copyright © 2023 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 387 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 387, Issue 1
1 Oct 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Quantitative Systems Pharmacology and Machine Learning: A Match Made in Heaven or Hell?
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Review ArticleSpecial Section on Quantitative Systems Pharmacology: A Foundation to Establish Precision Medicine—Minireview

QSP and ML: A Match Made in Heaven or Hell?

Marcus John Tindall, Lourdes Cucurull-Sanchez, Hitesh Mistry and James W.T. Yates
Journal of Pharmacology and Experimental Therapeutics October 1, 2023, 387 (1) 92-99; DOI: https://doi.org/10.1124/jpet.122.001551

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Review ArticleSpecial Section on Quantitative Systems Pharmacology: A Foundation to Establish Precision Medicine—Minireview

QSP and ML: A Match Made in Heaven or Hell?

Marcus John Tindall, Lourdes Cucurull-Sanchez, Hitesh Mistry and James W.T. Yates
Journal of Pharmacology and Experimental Therapeutics October 1, 2023, 387 (1) 92-99; DOI: https://doi.org/10.1124/jpet.122.001551
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Data, Knowledge, and Modeling
    • Machine Learning in Drug Discovery and Development
    • QSP Modeling
    • Combining ML and QSP in Drug Discovery and Development
    • Summary and Conclusions
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics