Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleSpecial Section on Quantitative Systems Pharmacology: A Foundation to Establish Precision Medicine

A Mathematical Model to Investigate the Effects of Ceralasertib and Olaparib in Targeting the Cellular DNA Damage Response Pathway

Kira Pugh, Michael Davies and Gibin Powathil
Journal of Pharmacology and Experimental Therapeutics October 2023, 387 (1) 55-65; DOI: https://doi.org/10.1124/jpet.122.001558
Kira Pugh
Department of Mathematics, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom (K.P., G.P.) and Oncology R&D, AstraZeneca, Cambridge, United Kingdom (M.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael Davies
Department of Mathematics, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom (K.P., G.P.) and Oncology R&D, AstraZeneca, Cambridge, United Kingdom (M.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gibin Powathil
Department of Mathematics, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom (K.P., G.P.) and Oncology R&D, AstraZeneca, Cambridge, United Kingdom (M.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Gibin Powathil
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The ataxia-telangiectasia and Rad3-related (ATR) inhibitor ceralasertib and the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib have shown synergistic activity, in vitro, in the FaDu ATM-knockout cell line. It was found that combining these drugs with lower doses and for shorter treatment periods induced greater or equal toxicity in cancer cells than using either as a single agent. Here, we developed a biologically motivated mathematical model governed by a set of ordinary differential equations, considering the cell cycle–specific interactions of olaparib and ceralasertib. By exploring a range of different possible drug mechanisms, we have studied the effects of their combination as well as which drug interactions are the most prominent. After careful model selection, the model was calibrated and compared with relevant experimental data. We have used this developed model further to investigate other doses of olaparib and ceralasertib in combination, which can be potentially helpful in exploring optimized dosage and delivery.

SIGNIFICANCE STATEMENT Drugs that target cellular DNA damage repair pathways are now being used as a new way to maximize the effect of multimodality treatments such as radiotherapy. Here, we develop a mathematical model to investigate the effects of ceralasertib and olaparib, two drugs that target DNA damage response pathways.

Footnotes

    • Received December 15, 2022.
    • Accepted May 25, 2023.
  • K.P. is supported by EPSRC DTP via Swansea University [Grant EP/T517987/1].

  • The authors declare no conflicts of interest.

  • dx.doi.org/10.1124/jpet.122.001558.

  • ↵Embedded ImageThis article has supplemental material available at jpet.aspetjournals.org.

  • Copyright © 2023 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 387 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 387, Issue 1
1 Oct 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A Mathematical Model to Investigate the Effects of Ceralasertib and Olaparib in Targeting the Cellular DNA Damage Response Pathway
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleSpecial Section on Quantitative Systems Pharmacology: A Foundation to Establish Precision Medicine

Modelling the Effects of DNA Damage Response Inhibitor Drugs

Kira Pugh, Michael Davies and Gibin Powathil
Journal of Pharmacology and Experimental Therapeutics October 1, 2023, 387 (1) 55-65; DOI: https://doi.org/10.1124/jpet.122.001558

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleSpecial Section on Quantitative Systems Pharmacology: A Foundation to Establish Precision Medicine

Modelling the Effects of DNA Damage Response Inhibitor Drugs

Kira Pugh, Michael Davies and Gibin Powathil
Journal of Pharmacology and Experimental Therapeutics October 1, 2023, 387 (1) 55-65; DOI: https://doi.org/10.1124/jpet.122.001558
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Data Availability
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Optimizing IFNα Therapy in MPN
  • AFTIR Metric to Predict In Vivo Receptor Occupancy
Show more Special Section on Quantitative Systems Pharmacology: A Foundation to Establish Precision Medicine

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics