Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleBehavioral Pharmacology

3,4-Methylenedioxypyrovalerone High-Responder Phenotype as a Tool to Evaluate Candidate Medications for Stimulant Use Disorder

Michelle R. Doyle, Lindsey N. Peng, Jianjing Cao, Kenner C. Rice, Amy Hauck Newman and Gregory T. Collins
Journal of Pharmacology and Experimental Therapeutics March 2023, 384 (3) 353-362; DOI: https://doi.org/10.1124/jpet.122.001419
Michelle R. Doyle
Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (M.R.D., L.N.P., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (M.R.D., G.T.C.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, Maryland (J.C., A.H.N.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism – Intramural Research Program, Bethesda, Maryland (K.C.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lindsey N. Peng
Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (M.R.D., L.N.P., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (M.R.D., G.T.C.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, Maryland (J.C., A.H.N.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism – Intramural Research Program, Bethesda, Maryland (K.C.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jianjing Cao
Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (M.R.D., L.N.P., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (M.R.D., G.T.C.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, Maryland (J.C., A.H.N.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism – Intramural Research Program, Bethesda, Maryland (K.C.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kenner C. Rice
Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (M.R.D., L.N.P., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (M.R.D., G.T.C.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, Maryland (J.C., A.H.N.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism – Intramural Research Program, Bethesda, Maryland (K.C.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Amy Hauck Newman
Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (M.R.D., L.N.P., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (M.R.D., G.T.C.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, Maryland (J.C., A.H.N.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism – Intramural Research Program, Bethesda, Maryland (K.C.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gregory T. Collins
Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (M.R.D., L.N.P., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (M.R.D., G.T.C.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, Maryland (J.C., A.H.N.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism – Intramural Research Program, Bethesda, Maryland (K.C.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Despite decades of research, there are no medications approved by the United States Food and Drug Administration to treat stimulant use disorders. Self-administration procedures are widely used to screen candidate medications for stimulant use disorder, although preclinical reductions in stimulant self-administration have not translated to meaningful reductions in stimulant use in humans. One possible reason for this discordance is that most preclinical studies evaluate candidate medications under conditions that promote predictable, and well-regulated patterns of drug-taking rather than the dysregulated and/or compulsive patterns of drug-taking characteristic of a stimulant use disorder. A subset of rats (“high-responders”) that self-administer 3,4-methelyendioxypyrovalerone (MDPV), a monoamine uptake inhibitor, develop high levels of dysregulated drug-taking consistent with behaviors related to stimulant use disorders. Because MDPV acts on dopamine, serotonin (5-HT), and sigma receptor systems, the current studies compared the potency and effectiveness of a dopamine D3 receptor partial agonist (VK4-40) or antagonist (VK4-116), a sigma receptor antagonist (BD1063), a dopamine D2/D3/sigma receptor antagonist (haloperidol), and a 5-HT2C receptor agonist (CP-809,101) to reduce MDPV (0.0032–0.1 mg/kg/infusion) self-administration in high- and low-responding rats as well as rats self-administering cocaine (0.032–1 mg/kg/infusion). VK4-40, VK4-116, haloperidol, and CP-809,101 were equipotent and effective at reducing drug-taking in all three groups of rats, including the high-responders; however, VK4-116 and CP-809,101 were less potent at reducing drug-taking in female compared with male rats. Together, these studies suggest that drugs targeting dopamine D3 or 5-HT2C receptors can effectively reduce dysregulated patterns of stimulant use, highlighting their potential utility for treating stimulant use disorders.

SIGNIFICANCE STATEMENT There are no United States Food and Drug Administration-approved treatments for stimulant use disorder, perhaps in part because candidate medications are most often evaluated in preclinical models using male subjects with well-regulated drug-taking. In an attempt to better model aberrant drug taking, this study found compounds acting at dopamine D3 or 5-HT2C receptors can attenuate drug-taking in male and female rats that self-administered two different stimulants and exhibited either a high or low substance use disorder-like phenotype.

Footnotes

    • Received August 17, 2022.
    • Accepted December 13, 2022.
  • This work was supported by the National Institutes of Health: National Institute of Drug Abuse [Grants R01-DA039146 and R36-DA050955], the jointly-sponsored National Institutes of Health Predoctoral Training Program in the Neurosciences [Grant T32-NS082145], and the Intramural Research Programs of the National Institute on Drug Abuse and the National Institute of Alcohol Abuse and Alcoholism NIDA Intramural Research Program [Grants Z1A-DA000424 and Z1A-DA000527].

  • No author has an actual or perceived conflict of interest with the contents of this article.

  • ↵1Current affiliation: Department of Psychiatry, University of California San Diego, La Jolla, CA, USA and The Scripps Research Institute, La Jolla, CA, USA.

  • Part of this work was presented as a poster presentation at the 2021 Experimental Biology/ASPET Annual Meeting as Doyle MR, Bhattacharya A, Rice KC, Collins GT (2021) MDPV high-responder phenotype as a tool to evaluate candidate medications for stimulant use disorder.

  • dx.doi.org/10.1124/jpet.122.001419.

  • ↵Embedded ImageThis article has supplemental material available at jpet.aspetjournals.org.

  • U.S. Government work not protected by U.S. copyright.
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 384 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 384, Issue 3
1 Mar 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
3,4-Methylenedioxypyrovalerone High-Responder Phenotype as a Tool to Evaluate Candidate Medications for Stimulant Use Disorder
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleBehavioral Pharmacology

MDPV High-Responders to Evaluate Candidate Medications

Michelle R. Doyle, Lindsey N. Peng, Jianjing Cao, Kenner C. Rice, Amy Hauck Newman and Gregory T. Collins
Journal of Pharmacology and Experimental Therapeutics March 1, 2023, 384 (3) 353-362; DOI: https://doi.org/10.1124/jpet.122.001419

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleBehavioral Pharmacology

MDPV High-Responders to Evaluate Candidate Medications

Michelle R. Doyle, Lindsey N. Peng, Jianjing Cao, Kenner C. Rice, Amy Hauck Newman and Gregory T. Collins
Journal of Pharmacology and Experimental Therapeutics March 1, 2023, 384 (3) 353-362; DOI: https://doi.org/10.1124/jpet.122.001419
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Cromakalim prodrugs are analgesics in chronic pain models
  • Role of Residues S426 and S430 in Cannabinoid Tolerance
  • Running Title: Stimulus effects of nicotine aerosol
Show more Behavioral Pharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics