Visual Overview
Abstract
Targeting neuronal Kv7 channels by pharmacological activation has been proven to be an attractive therapeutic strategy for epilepsy. Here, we show that activation of Kv7 channels by an opener SCR2682 dose-dependently reduces seizure activity and severity in rodent models of epilepsy induced by a GABAa receptor antagonist pentylenetetrazole (PTZ), maximal electroshock, and a glutamate receptor agonist kainic acid (KA). Electroencephalographic recordings of rat cerebral cortex confirm that SCR2682 also decreases epileptiform discharges in KA-induced seizures. Nissl and neuronal nuclei staining further demonstrates that SCR2682 also protects neurons from injury induced by KA. In Morris water maze navigation and Y-maze tests, SCR2682 improves PTZ- and KA-induced cognitive impairment. Taken together, our findings demonstrate that pharmacological activation of Kv7 by novel opener SCR2682 may hold promise for therapy of epilepsy with cognitive impairment.
SIGNIFICANCE STATEMENT A neuronal Kv7 channel opener SCR2682 attenuates epileptogenesis and seizure-induced cognitive impairment in rodent models of seizures, thus possessing a developmental potential for effective therapy of epilepsy with cognitive impairment.
Footnotes
- Received May 27, 2021.
- Accepted October 20, 2022.
This work was supported by research grants to C.J. and K.W. from Shandong Provincial Natural Science Foundation [ZR2020MH155], Shandong Province Higher Educational Science and Technology Program [J17KA236], Science and Technology Program of Guangdong [2018B030334001], and the Ministry of Science and Technology of China [2018ZX09711001-004-006].
No author has an actual or perceived conflict of interest with the contents of this article.
↵1These authors contributed equally.
- Copyright © 2023 by The American Society for Pharmacology and Experimental Therapeutics
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|