Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNeuropharmacology

Novel Allosteric Modulator Southern Research Institute-32743 Reverses HIV-1 Transactivator of Transcription-Induced Increase in Dopamine Release in the Caudate Putamen of Inducible Transactivator of Transcription Transgenic Mice

Sarah E. Davis, Mark J. Ferris, Subramaniam Ananthan, Corinne E. Augelli-Szafran and Jun Zhu
Journal of Pharmacology and Experimental Therapeutics February 2023, 384 (2) 306-314; DOI: https://doi.org/10.1124/jpet.122.001291
Sarah E. Davis
Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (S.E.D., J.Z.); Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (M.M.F.); and Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, Alabama (S.A., C.E.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sarah E. Davis
Mark J. Ferris
Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (S.E.D., J.Z.); Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (M.M.F.); and Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, Alabama (S.A., C.E.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Subramaniam Ananthan
Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (S.E.D., J.Z.); Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (M.M.F.); and Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, Alabama (S.A., C.E.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Corinne E. Augelli-Szafran
Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (S.E.D., J.Z.); Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (M.M.F.); and Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, Alabama (S.A., C.E.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jun Zhu
Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (S.E.D., J.Z.); Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (M.M.F.); and Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, Alabama (S.A., C.E.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Visual Overview

Figure
  • Download figure
  • Open in new tab
  • Download powerpoint

Abstract

Development of neurocognitive disorder in human immunodeficiency virus (HIV)-infected patients has been linked to dysregulation of dopamine by the HIV-1 transactivator of transcription (Tat) protein, a negative allosteric modulator of dopamine transporter (DAT). Using fast scan cyclic voltammetry, the present study determined the effects of in vivo Tat expression on dopamine release in the caudate putamen of inducible Tat transgenic (iTat-tg) mice and the impact of a novel DAT allosteric modulator, Southern Research Institute (SRI)-32743, on the Tat effect. We found that 7- or 14-day doxycycline (Dox)-induced Tat expression in iTat-tg mice resulted in a 2-fold increase in phasic but not tonic stimulated baseline dopamine release relative to saline control mice. To determine whether the Tat-induced increase in dopamine release is mediated by DAT regulation, we examined the effect of an in vitro applied DAT inhibitor, nomifensine, on the dopamine release. Nomifensine (1 nM–10 µM) concentration-dependently enhanced phasic stimulated dopamine release in both saline- and Dox-treated iTat-tg mice, while the magnitude of the nomifensine-mediated dopamine release was unchanged between saline and Dox treatment groups. A single systemic administration of SRI-32743 prior to animal sacrifice reversed the increased dopamine release in the baseline of phasic dopamine release and nomifensine-augmented dopamine levels in Dox-treated iTat-tg mice, while SRI-32743 alone did not alter baseline of dopamine release. These findings suggest that Tat expression induced an increase in extracellular dopamine levels by not only inhibiting DAT-mediated dopamine transport but also stimulating synaptic dopamine release. Thus, DAT allosteric modulators may serve as a potential therapeutic intervention for HIV infection-dysregulated dopamine system observed in HIV-1 positive individuals.

SIGNIFICANCE STATEMENT HIV infection-induced dysregulation of the dopaminergic system has been implicated in the development of neurocognitive impairments observed in HIV positive patients. Understanding the mechanisms underlying HIV-1 Tat protein-induced alteration of extracellular dopamine levels will provide insights into the development of molecules that can attenuate Tat interaction with targets in the dopaminergic system. Here, we determined whether Tat alters dopamine release and how the novel DAT allosteric modulator, SRI-32743, impacts dopamine neurotransmission to attenuate Tat-induced effects on extracellular dopamine dynamics.

Footnotes

    • Received May 5, 2022.
    • Accepted November 7, 2022.
  • This work was supported by the SPARC grant through the University of South Carolina Office of the Vice President for Research to SD and National Institutes of Health [Grant DA035714] (to J.Z.) and [Grant DA047924] (to C.A.S.).

  • No author has an actual or perceived conflict of interest with the contents of this article.

  • dx.doi.org/10.1124/jpet.122.001291.

  • ↵Embedded ImageThis article has supplemental material available at jpet.aspetjournals.org.

  • Copyright © 2023 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 384 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 384, Issue 2
1 Feb 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Novel Allosteric Modulator Southern Research Institute-32743 Reverses HIV-1 Transactivator of Transcription-Induced Increase in Dopamine Release in the Caudate Putamen of Inducible Transactivator of Transcription Transgenic Mice
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNeuropharmacology

In Vivo SRI-32743 Attenuates Tat Effects on Extracellular DA

Sarah E. Davis, Mark J. Ferris, Subramaniam Ananthan, Corinne E. Augelli-Szafran and Jun Zhu
Journal of Pharmacology and Experimental Therapeutics February 1, 2023, 384 (2) 306-314; DOI: https://doi.org/10.1124/jpet.122.001291

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleNeuropharmacology

In Vivo SRI-32743 Attenuates Tat Effects on Extracellular DA

Sarah E. Davis, Mark J. Ferris, Subramaniam Ananthan, Corinne E. Augelli-Szafran and Jun Zhu
Journal of Pharmacology and Experimental Therapeutics February 1, 2023, 384 (2) 306-314; DOI: https://doi.org/10.1124/jpet.122.001291
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Visual Overview
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • KRM-II-81 Analogs
  • Substituted tryptamine activity at 5-HT receptors & SERT
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics