Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleGastrointestinal, Hepatic, Pulmonary, and Renal

Role of Hydrogen Sulfide in the Development of Colonic Hypomotility in a Diabetic Mouse Model Induced by Streptozocin

Xiaojing Quan, Jie Zhang, Yanli Liu, Ceng Sun, Hesheng Luo and Jinhai Wang
Journal of Pharmacology and Experimental Therapeutics February 2023, 384 (2) 287-295; DOI: https://doi.org/10.1124/jpet.122.001392
Xiaojing Quan
Department of Gastroenterology (X.Q., Y.L., C.S., J.W.) and Department of Endocrinology and Metabolic Diseases (J.Z.), the Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an, Shaanxi, China; and Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China (H.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jie Zhang
Department of Gastroenterology (X.Q., Y.L., C.S., J.W.) and Department of Endocrinology and Metabolic Diseases (J.Z.), the Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an, Shaanxi, China; and Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China (H.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yanli Liu
Department of Gastroenterology (X.Q., Y.L., C.S., J.W.) and Department of Endocrinology and Metabolic Diseases (J.Z.), the Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an, Shaanxi, China; and Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China (H.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ceng Sun
Department of Gastroenterology (X.Q., Y.L., C.S., J.W.) and Department of Endocrinology and Metabolic Diseases (J.Z.), the Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an, Shaanxi, China; and Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China (H.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hesheng Luo
Department of Gastroenterology (X.Q., Y.L., C.S., J.W.) and Department of Endocrinology and Metabolic Diseases (J.Z.), the Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an, Shaanxi, China; and Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China (H.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jinhai Wang
Department of Gastroenterology (X.Q., Y.L., C.S., J.W.) and Department of Endocrinology and Metabolic Diseases (J.Z.), the Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an, Shaanxi, China; and Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China (H.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Hydrogen sulfide (H2S), a novel gasotransmitter, is involved in the regulation of gut motility. Alterations in the balance of H2S play an important role in the pathogenesis of diabetes. This study was conducted to investigate the role of H2S in the colonic hypomotility of mice with streptozotocin (STZ)-induced diabetes. A single intraperitoneal injection of STZ was used to induce the type 1 diabetes model. Male C57BL/6 mice were randomized into a control group and an STZ-treated group. Immunohistochemistry, Western blotting, H2S generation, organ bath studies and whole-cell patch clamp techniques were carried out in single smooth muscle cells (SMCs) of the colon. We found that STZ-induced diabetic mice showed decreased stool output, impaired colonic contractility, and increased endogenous generation of H2S (p < 0.05). H2S-producing enzymes were upregulated in the colon tissues of diabetic mice (p < 0.05). The exogenous H2S donor sodium hydrosulfide (NaHS) elicited a biphasic action on colonic muscle contraction with excitation at lower concentrations and inhibition at higher concentrations. NaHS (0.1 mM) increased the currents of voltage-dependent calcium channels (VDCCs), while NaHS at 0.5 mM and 1.5 mM induced inhibition. Furthermore, NaHS reduced the currents of both voltage-dependent potassium (KV) channels and large conductance calcium-activated potassium (BK) channels in a dose-dependent manner. These results show that spontaneous contraction of colonic muscle strips from diabetic mice induced by STZ was significantly decreased, which may underlie the constipation associated with diabetes mellitus (DM). H2S overproduction with subsequent suppression of muscle contraction via VDCCs on SMCs may contribute in part to the pathogenesis of colonic hypomotility in DM.

SIGNIFICANCE STATEMENT Hydrogen sulfide may exhibit a biphasic effect on colonic motility in mice by regulating the activities of voltage-dependent calcium channels and voltage-dependent and large conductance calcium activated potassium channels. H2S overproduction with subsequent suppression of muscle contraction via VDCCs may contribute to the pathogenesis of colonic hypomotility in diabetes mellitus.

Footnotes

    • Received July 23, 2022.
    • Accepted November 1, 2022.
  • This work was supported by the Natural Science Foundation of Shaanxi Province [Grant 2021JQ-411] and the National Natural Science Foundation of China [Grant 82100567].

  • No author has an actual or perceived conflict of interest with the contents of this article.

  • dx.doi.org/10.1124/jpet.122.001392.

  • Copyright © 2023 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 384 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 384, Issue 2
1 Feb 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Role of Hydrogen Sulfide in the Development of Colonic Hypomotility in a Diabetic Mouse Model Induced by Streptozocin
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleGastrointestinal, Hepatic, Pulmonary, and Renal

H2S Overproduction and Colonic Hypomotility in DM

Xiaojing Quan, Jie Zhang, Yanli Liu, Ceng Sun, Hesheng Luo and Jinhai Wang
Journal of Pharmacology and Experimental Therapeutics February 1, 2023, 384 (2) 287-295; DOI: https://doi.org/10.1124/jpet.122.001392

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleGastrointestinal, Hepatic, Pulmonary, and Renal

H2S Overproduction and Colonic Hypomotility in DM

Xiaojing Quan, Jie Zhang, Yanli Liu, Ceng Sun, Hesheng Luo and Jinhai Wang
Journal of Pharmacology and Experimental Therapeutics February 1, 2023, 384 (2) 287-295; DOI: https://doi.org/10.1124/jpet.122.001392
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion and Conclusion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • A Novel Long-Acting GLP-2, HM15912, for Short Bowel Syndrome
  • MIP3a in Progressive Renal Injury Associated With Obesity
Show more Gastrointestinal, Hepatic, Pulmonary, and Renal

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics