Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleDrug Discovery and Translational Medicine
Open Access

Pharmacokinetics and Safety Studies in Rodent Models Support Development of EPICERTIN as a Novel Topical Wound-Healing Biologic for Ulcerative Colitis

Daniel Tusé, Micaela Reeves, Joshua Royal, Krystal T. Hamorsky, Hanna Ng, Maria Arolfo, Carol Green, Abhishek Trigunaite, Toufan Parman, Goo Lee and Nobuyuki Matoba
Journal of Pharmacology and Experimental Therapeutics March 2022, 380 (3) 162-170; DOI: https://doi.org/10.1124/jpet.121.000904
Daniel Tusé
GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Micaela Reeves
GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joshua Royal
GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Krystal T. Hamorsky
GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hanna Ng
GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Maria Arolfo
GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carol Green
GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Abhishek Trigunaite
GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Toufan Parman
GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Goo Lee
GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nobuyuki Matoba
GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

The novel wound-healing biologic EPICERTIN, a recombinant analog of cholera toxin B subunit, is in early development for the management of ulcerative colitis. This study established for the first time the pharmacokinetics (PK), bioavailability (BA), and acute safety of EPICERTIN in healthy and dextran sodium sulfate-induced colitic mice and healthy rats. For PK and BA assessments, single administrations of various concentrations of EPICERTIN were given intravenously or intrarectally to healthy and colitic C57BL/6 mice and to healthy Sprague-Dawley rats. After intravenous administration to healthy animals, the drug’s plasma half-life (t1/2) for males and females was 0.26 and 0.3 hours in mice and 19.4 and 14.5 hours in rats, respectively. After intrarectal administration, drug was detected at very low levels in only four samples of mouse plasma, with no correlation to colon epithelial integrity. No drug was detected in rat plasma. A single intrarectal dose of 0.1 µM (0.6 µg/mouse) EPICERTIN significantly facilitated the healing of damaged colonic epithelium as determined by disease activity index and histopathological scoring, whereas 10-fold higher or lower concentrations showed no effect. For acute toxicity evaluation, healthy rats were given a single intrarectal administration of various doses of EPICERTIN with sacrifice on Day 8, recording body weight, morbidity, mortality, clinical pathology, and gross necropsy observations. There were no drug-related effects of toxicological significance. The no observed adverse effect level (intrarectal) in rats was determined to be 5 µM (307 µg/animal, or 5.2 µg drug/cm2 of colorectal surface area), which is 14 times the anticipated intrarectally delivered clinical dose.

SIGNIFICANCE STATEMENT EPICERTIN is a candidate wound-healing biologic for the management of ulcerative colitis. This study determined for the first time the intravenous and intrarectal pharmacokinetics and bioavailability of the drug in healthy and colitic mice and healthy rats, and its acute safety in a dose-escalation study in rats. An initial therapeutic dose in colitic mice was also established. EPICERTIN delivered intrarectally was minimally absorbed systemically, was well tolerated, and induced epithelial wound healing topically at a low dose.

Footnotes

    • Received September 3, 2021.
    • Accepted January 2, 2022.
  • ↵1 D.T. and M.R. contributed equally to the work.

  • These studies were supported by a grant from the Leona M. and Harry B. Helmsley Charitable Trust [2014PG-MED001] and a National Institutes of Health grant [R01 DK123712] (to N.M.).

  • https://doi.org/10.1124/jpet.121.000904.

  • ↵Embedded ImageThis article has supplemental material available at jpet.aspetjournals.org.

  • Copyright © 2022 The Author(s)

This is an open access article distributed under the CC BY Attribution 4.0 International license.

View Full Text
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 380 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 380, Issue 3
1 Mar 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Pharmacokinetics and Safety Studies in Rodent Models Support Development of EPICERTIN as a Novel Topical Wound-Healing Biologic for Ulcerative Colitis
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleDrug Discovery and Translational Medicine

Pharmacokinetics and Safety of EPICERTIN

Daniel Tusé, Micaela Reeves, Joshua Royal, Krystal T. Hamorsky, Hanna Ng, Maria Arolfo, Carol Green, Abhishek Trigunaite, Toufan Parman, Goo Lee and Nobuyuki Matoba
Journal of Pharmacology and Experimental Therapeutics March 1, 2022, 380 (3) 162-170; DOI: https://doi.org/10.1124/jpet.121.000904

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleDrug Discovery and Translational Medicine

Pharmacokinetics and Safety of EPICERTIN

Daniel Tusé, Micaela Reeves, Joshua Royal, Krystal T. Hamorsky, Hanna Ng, Maria Arolfo, Carol Green, Abhishek Trigunaite, Toufan Parman, Goo Lee and Nobuyuki Matoba
Journal of Pharmacology and Experimental Therapeutics March 1, 2022, 380 (3) 162-170; DOI: https://doi.org/10.1124/jpet.121.000904
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Midazolam compared with tezampanel-caramiphen against soman
  • ERR agonist reduces obesity
  • Mechanistic Modeling of Humoral Immunity in NHPs
Show more Drug Discovery and Translational Medicine

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics