Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleMetabolism, Transport, and Pharmacogenetics

Refined Prediction of Pharmacokinetic Kratom-Drug Interactions: Time-Dependent Inhibition Considerations

Rakshit S. Tanna, Dan-Dan Tian, Nadja B. Cech, Nicholas H. Oberlies, Allan E. Rettie, Kenneth E. Thummel and Mary F. Paine
Journal of Pharmacology and Experimental Therapeutics January 2021, 376 (1) 64-73; DOI: https://doi.org/10.1124/jpet.120.000270
Rakshit S. Tanna
Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dan-Dan Tian
Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nadja B. Cech
Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nicholas H. Oberlies
Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Allan E. Rettie
Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kenneth E. Thummel
Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mary F. Paine
Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Preparations from the leaves of the kratom plant (Mitragyna speciosa) are consumed for their opioid-like effects. Several deaths have been associated with kratom used concomitantly with some drugs. Pharmacokinetic interactions are potential underlying mechanisms of these fatalities. Accumulating in vitro evidence has demonstrated select kratom alkaloids, including the abundant indole alkaloid mitragynine, as reversible inhibitors of several cytochromes P450 (CYPs). The objective of this work was to refine the mechanistic understanding of potential kratom-drug interactions by considering both reversible and time-dependent inhibition (TDI) of CYPs in the liver and intestine. Mitragynine was tested against CYP2C9 (diclofenac 4′-hydroxylation), CYP2D6 (dextromethorphan O-demethylation), and CYP3A (midazolam 1′-hydroxylation) activities in human liver microsomes (HLMs) and CYP3A activity in human intestinal microsomes (HIMs). Comparing the absence to presence of NADPH during preincubation of mitragynine with HLMs or HIMs, an ∼7-fold leftward shift in IC50 (∼20 to 3 μM) toward CYP3A resulted, prompting determination of TDI parameters (HLMs: KI, 4.1 ± 0.9 μM; kinact, 0.068 ± 0.01 min−1; HIMs: KI, 4.2 ± 2.5 μM; kinact, 0.079 ± 0.02 min−1). Mitragynine caused no leftward shift in IC50 toward CYP2C9 (∼40 μM) and CYP2D6 (∼1 μM) but was a strong competitive inhibitor of CYP2D6 (Ki, 1.17 ± 0.07 μM). Using a recommended mechanistic static model, mitragynine (2-g kratom dose) was predicted to increase dextromethorphan and midazolam area under the plasma concentration-time curve by 1.06- and 5.69-fold, respectively. The predicted midazolam area under the plasma concentration-time curve ratio exceeded the recommended cutoff (1.25), which would have been missed if TDI was not considered.

SIGNIFICANCE STATEMENT Kratom, a botanical natural product increasingly consumed for its opioid-like effects, may precipitate potentially serious pharmacokinetic interactions with drugs. The abundant kratom indole alkaloid mitragynine was shown to be a time-dependent inhibitor of hepatic and intestinal cytochrome P450 3A activity. A mechanistic static model predicted mitragynine to increase systemic exposure to the probe drug substrate midazolam by 5.7-fold, necessitating further evaluation via dynamic models and clinical assessment to advance the understanding of consumer safety associated with kratom use.

Footnotes

    • Received August 5, 2020.
    • Accepted October 8, 2020.
  • ↵1 Current affiliation: Drug Disposition, Eli Lilly and Company, Indianapolis, Indiana.

  • This work was supported by the National Institutes of Health National Center for Complimentary and Integrative Health [Grant U54-AT008909] (to M.F.P.). The content is solely the responsibility of the authors and does not necessarily represent the official views of NIH.

  • https://doi.org/10.1124/jpet.120.000270.

  • ↵Embedded ImageThis article has supplemental material available at jpet.aspetjournals.org.

  • Copyright © 2020 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 376 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 376, Issue 1
1 Jan 2021
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Refined Prediction of Pharmacokinetic Kratom-Drug Interactions: Time-Dependent Inhibition Considerations
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleMetabolism, Transport, and Pharmacogenetics

Refined Prediction of Potential Kratom-Drug Interactions

Rakshit S. Tanna, Dan-Dan Tian, Nadja B. Cech, Nicholas H. Oberlies, Allan E. Rettie, Kenneth E. Thummel and Mary F. Paine
Journal of Pharmacology and Experimental Therapeutics January 1, 2021, 376 (1) 64-73; DOI: https://doi.org/10.1124/jpet.120.000270

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleMetabolism, Transport, and Pharmacogenetics

Refined Prediction of Potential Kratom-Drug Interactions

Rakshit S. Tanna, Dan-Dan Tian, Nadja B. Cech, Nicholas H. Oberlies, Allan E. Rettie, Kenneth E. Thummel and Mary F. Paine
Journal of Pharmacology and Experimental Therapeutics January 1, 2021, 376 (1) 64-73; DOI: https://doi.org/10.1124/jpet.120.000270
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Amyloid-β 40/42 Uptake Kinetics at the Blood-Brain Barrier
  • OATP1B and PK of large lipophilic acids
  • PBPK Modeling of Chloroquine
Show more Metabolism, Transport, and Pharmacogenetics

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics