Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleCardiovascular

Protective Mechanism of the Selective Vasopressin V1A Receptor Agonist Selepressin against Endothelial Barrier Dysfunction

Nektarios Barabutis, Margarita Marinova, Pavel Solopov, Mohammad A. Uddin, Glenn E. Croston, Torsten M. Reinheimer and John D. Catravas
Journal of Pharmacology and Experimental Therapeutics November 2020, 375 (2) 286-295; DOI: https://doi.org/10.1124/jpet.120.000146
Nektarios Barabutis
Frank Reidy Research Center for Bioelectrics (N.B., M.M., P.S., J.D.C.) and School of Medical Diagnostic and Translational Sciences, College of Health Sciences (J.D.C.), Old Dominion University, Norfolk, Virginia; School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (N.B., M.A.U.); Croston Consulting, San Diego, California (G.E.C.); and Ferring Pharmaceuticals A/S, Copenhagen, Denmark (T.M.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Margarita Marinova
Frank Reidy Research Center for Bioelectrics (N.B., M.M., P.S., J.D.C.) and School of Medical Diagnostic and Translational Sciences, College of Health Sciences (J.D.C.), Old Dominion University, Norfolk, Virginia; School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (N.B., M.A.U.); Croston Consulting, San Diego, California (G.E.C.); and Ferring Pharmaceuticals A/S, Copenhagen, Denmark (T.M.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pavel Solopov
Frank Reidy Research Center for Bioelectrics (N.B., M.M., P.S., J.D.C.) and School of Medical Diagnostic and Translational Sciences, College of Health Sciences (J.D.C.), Old Dominion University, Norfolk, Virginia; School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (N.B., M.A.U.); Croston Consulting, San Diego, California (G.E.C.); and Ferring Pharmaceuticals A/S, Copenhagen, Denmark (T.M.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mohammad A. Uddin
Frank Reidy Research Center for Bioelectrics (N.B., M.M., P.S., J.D.C.) and School of Medical Diagnostic and Translational Sciences, College of Health Sciences (J.D.C.), Old Dominion University, Norfolk, Virginia; School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (N.B., M.A.U.); Croston Consulting, San Diego, California (G.E.C.); and Ferring Pharmaceuticals A/S, Copenhagen, Denmark (T.M.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Glenn E. Croston
Frank Reidy Research Center for Bioelectrics (N.B., M.M., P.S., J.D.C.) and School of Medical Diagnostic and Translational Sciences, College of Health Sciences (J.D.C.), Old Dominion University, Norfolk, Virginia; School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (N.B., M.A.U.); Croston Consulting, San Diego, California (G.E.C.); and Ferring Pharmaceuticals A/S, Copenhagen, Denmark (T.M.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Torsten M. Reinheimer
Frank Reidy Research Center for Bioelectrics (N.B., M.M., P.S., J.D.C.) and School of Medical Diagnostic and Translational Sciences, College of Health Sciences (J.D.C.), Old Dominion University, Norfolk, Virginia; School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (N.B., M.A.U.); Croston Consulting, San Diego, California (G.E.C.); and Ferring Pharmaceuticals A/S, Copenhagen, Denmark (T.M.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John D. Catravas
Frank Reidy Research Center for Bioelectrics (N.B., M.M., P.S., J.D.C.) and School of Medical Diagnostic and Translational Sciences, College of Health Sciences (J.D.C.), Old Dominion University, Norfolk, Virginia; School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (N.B., M.A.U.); Croston Consulting, San Diego, California (G.E.C.); and Ferring Pharmaceuticals A/S, Copenhagen, Denmark (T.M.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Sepsis and septic shock are among the most common causes of death in the intensive care unit; advanced therapeutic approaches are thus urgently needed. Vascular hyperpermeability represents a major manifestation of severe sepsis and is responsible for the ensuing organ dysfunction and failure. Vasopressin V1A receptor (V1AR) agonists have shown promise in the treatment of sepsis, increasing blood pressure, and reducing vascular hyperpermeability. The effects of the selective V1AR-selective agonist selepressin have been investigated in an in vitro model of thrombin-, vascular endothelial growth factor–, angiopoietin 2–, and lipopolysaccharide (LPS)-induced pulmonary microvascular endothelial hyperpermeability. Results suggest that selepressin counteracts the effects of all four endothelial barrier disruptors in a concentration-dependent manner, as reflected in real-time measurements of vascular permeability by means of transendothelial electrical resistance. Further, selepressin protected the barrier integrity against the LPS-mediated corruption of the endothelial monolayer integrity, as captured by VE-cadherin and actin staining. The protective effects of selepressin were abolished by silencing of the vasopressin V1AR, as well as by atosiban, an antagonist of the human V1AR. p53 appears to be involved in mediating these palliative effects, since selepressin strongly induced its expression levels, suppressed the inflammatory RhoA/myosin light chain2 pathway, and triggered the barrier-protective effects of the GTPase Rac1. We conclude that V1AR-selective agonists, such as selepressin, may prove useful in the improvement of endothelial barrier function in the management of severe sepsis.

SIGNIFICANCE STATEMENT A cardinal sign of sepsis, a serious disease with significant mortality and no specific treatment, is pulmonary endothelial barrier dysfunction that leads to pulmonary edema. Here, we present evidence that in cultured human lung microvascular endothelial cells, the synthetic, selective vasopressin V1A receptor agonist selepressin protects against endothelial barrier dysfunction caused by four different edemogenic agents, suggesting a potential role of selepressin in the clinical management of sepsis.

Footnotes

    • Received June 2, 2020.
    • Accepted August 17, 2020.
  • The study was sponsored by Ferring Pharmaceuticals A/S (Denmark).

  • https://doi.org/10.1124/jpet.120.000146.

  • Copyright © 2020 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 375 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 375, Issue 2
1 Nov 2020
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Protective Mechanism of the Selective Vasopressin V1A Receptor Agonist Selepressin against Endothelial Barrier Dysfunction
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleCardiovascular

Selepressin Blocks Endothelial Barrier Dysfunction

Nektarios Barabutis, Margarita Marinova, Pavel Solopov, Mohammad A. Uddin, Glenn E. Croston, Torsten M. Reinheimer and John D. Catravas
Journal of Pharmacology and Experimental Therapeutics November 1, 2020, 375 (2) 286-295; DOI: https://doi.org/10.1124/jpet.120.000146

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleCardiovascular

Selepressin Blocks Endothelial Barrier Dysfunction

Nektarios Barabutis, Margarita Marinova, Pavel Solopov, Mohammad A. Uddin, Glenn E. Croston, Torsten M. Reinheimer and John D. Catravas
Journal of Pharmacology and Experimental Therapeutics November 1, 2020, 375 (2) 286-295; DOI: https://doi.org/10.1124/jpet.120.000146
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • 4-Chloro ring-substituted synthetic cathinones
  • 14-3-3 Influences Nav1.5 Response to Anti-Arrhythmic Drugs
  • Inhaled Treprostinil Palmitil in the Sugen/Hypoxia Rat Model
Show more Cardiovascular

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics