Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNeuropharmacology

Chronic Morphine-Induced Changes in Signaling at the A3 Adenosine Receptor Contribute to Morphine-Induced Hyperalgesia, Tolerance, and Withdrawal

Timothy M. Doyle, Tally M. Largent-Milnes, Zhoumou Chen, Vasiliki Staikopoulos, Emanuela Esposito, Rebecca Dalgarno, Churmy Fan, Dilip K. Tosh, Salvatore Cuzzocrea, Kenneth A. Jacobson, Tuan Trang, Mark R. Hutchinson, Gary J. Bennett, Todd W. Vanderah and Daniela Salvemini
Journal of Pharmacology and Experimental Therapeutics August 2020, 374 (2) 331-341; DOI: https://doi.org/10.1124/jpet.120.000004
Timothy M. Doyle
Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tally M. Largent-Milnes
Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Zhoumou Chen
Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vasiliki Staikopoulos
Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Emanuela Esposito
Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rebecca Dalgarno
Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Churmy Fan
Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dilip K. Tosh
Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Salvatore Cuzzocrea
Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kenneth A. Jacobson
Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kenneth A. Jacobson
Tuan Trang
Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mark R. Hutchinson
Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gary J. Bennett
Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Todd W. Vanderah
Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniela Salvemini
Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Treating chronic pain by using opioids, such as morphine, is hampered by the development of opioid-induced hyperalgesia (OIH; increased pain sensitivity), antinociceptive tolerance, and withdrawal, which can contribute to dependence and abuse. In the central nervous system, the purine nucleoside adenosine has been implicated in beneficial and detrimental actions of morphine, but the extent of their interaction remains poorly understood. Here, we demonstrate that morphine-induced OIH and antinociceptive tolerance in rats is associated with a twofold increase in adenosine kinase (ADK) expression in the dorsal horn of the spinal cord. Blocking ADK activity in the spinal cord provided greater than 90% attenuation of OIH and antinociceptive tolerance through A3 adenosine receptor (A3AR) signaling. Supplementing adenosine signaling with selective A3AR agonists blocked OIH and antinociceptive tolerance in rodents of both sexes. Engagement of A3AR in the spinal cord with an ADK inhibitor or A3AR agonist was associated with reduced dorsal horn of the spinal cord expression of the NOD-like receptor pyrin domain-containing 3 (60%–75%), cleaved caspase 1 (40%–60%), interleukin (IL)-1β (76%–80%), and tumor necrosis factor (50%–60%). In contrast, the neuroinhibitory and anti-inflammatory cytokine IL-10 increased twofold. In mice, A3AR agonists prevented the development of tolerance in a model of neuropathic pain and reduced naloxone-dependent withdrawal behaviors by greater than 50%. These findings suggest A3AR-dependent adenosine signaling is compromised during sustained morphine to allow the development of morphine-induced adverse effects. These findings raise the intriguing possibility that A3AR agonists may be useful adjunct to opioids to manage their unwanted effects.

SIGNIFICANCE STATEMENT The development of hyperalgesia and antinociceptive tolerance during prolonged opioid use are noteworthy opioid-induced adverse effects that reduce opioid efficacy for treating chronic pain and increase the risk of dependence and abuse. We report that in rodents, these adverse effects are due to reduced adenosine signaling at the A3AR, resulting in NOD-like receptor pyrin domain-containing 3–interleukin-1β neuroinflammation in spinal cord. These effects are attenuated by A3AR agonists, suggesting that A3AR may be a target for therapeutic intervention with selective A3AR agonist as opioid adjuncts.

Footnotes

    • Received March 11, 2020.
    • Accepted April 27, 2020.
  • Studies were supported by National Institutes of Health [Cutting-Edge Basic Research Awards Grant R21 DA040305 to D.S.] and the The National Institute of Diabetes and Digestive and Kidney Diseases Intramural Research Program [Grant Z01 DK031117-26 to K.A.J.].

  • D.S. and G.J.B. are founders of BioIntervene, Inc. which has licensed related intellectual property from Saint Louis University and the National Institutes of Health. All other authors declare no competing interests.

  • https://doi.org/10.1124/jpet.120.000004.

  • ↵Embedded ImageThis article has supplemental material available at jpet.aspetjournals.org.

  • U.S. Government work not protected by U.S. copyright
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 374 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 374, Issue 2
1 Aug 2020
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Chronic Morphine-Induced Changes in Signaling at the A3 Adenosine Receptor Contribute to Morphine-Induced Hyperalgesia, Tolerance, and Withdrawal
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNeuropharmacology

A3 Adenosine Receptor and Morphine-Induced Adverse Effects

Timothy M. Doyle, Tally M. Largent-Milnes, Zhoumou Chen, Vasiliki Staikopoulos, Emanuela Esposito, Rebecca Dalgarno, Churmy Fan, Dilip K. Tosh, Salvatore Cuzzocrea, Kenneth A. Jacobson, Tuan Trang, Mark R. Hutchinson, Gary J. Bennett, Todd W. Vanderah and Daniela Salvemini
Journal of Pharmacology and Experimental Therapeutics August 1, 2020, 374 (2) 331-341; DOI: https://doi.org/10.1124/jpet.120.000004

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleNeuropharmacology

A3 Adenosine Receptor and Morphine-Induced Adverse Effects

Timothy M. Doyle, Tally M. Largent-Milnes, Zhoumou Chen, Vasiliki Staikopoulos, Emanuela Esposito, Rebecca Dalgarno, Churmy Fan, Dilip K. Tosh, Salvatore Cuzzocrea, Kenneth A. Jacobson, Tuan Trang, Mark R. Hutchinson, Gary J. Bennett, Todd W. Vanderah and Daniela Salvemini
Journal of Pharmacology and Experimental Therapeutics August 1, 2020, 374 (2) 331-341; DOI: https://doi.org/10.1124/jpet.120.000004
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Oxysterols and ethanol
  • P-glycoprotein Apical Efflux Ratio for Compound Optimization
  • Pharmacology of Carbamate Insecticides at MT1 & MT2
Show more Neuropharmacology

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics