Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNeuropharmacology
Open Access

Use of a Noninvasive Brain-Penetrating Peptide-Drug Conjugate Strategy to Improve the Delivery of Opioid Pain Relief Medications to the Brain

Émilie Eiselt, Valérie Otis, Karine Belleville, Gaoqiang Yang, Alain Larocque, Anthony Régina, Michel Demeule, Philippe Sarret and Louis Gendron
Journal of Pharmacology and Experimental Therapeutics July 2020, 374 (1) 52-61; DOI: https://doi.org/10.1124/jpet.119.263566
Émilie Eiselt
Département de pharmacologie-physiologie, Institut de pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada (É.E., V.O., K.B., P.S., L.G.); Angiochem Inc., Montréal, Québec, Canada (G.Y., A.L., A.R., M.D.); and Quebec Pain Research Network, Sherbrooke, Québec, Canada (P.S., L.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Valérie Otis
Département de pharmacologie-physiologie, Institut de pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada (É.E., V.O., K.B., P.S., L.G.); Angiochem Inc., Montréal, Québec, Canada (G.Y., A.L., A.R., M.D.); and Quebec Pain Research Network, Sherbrooke, Québec, Canada (P.S., L.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Karine Belleville
Département de pharmacologie-physiologie, Institut de pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada (É.E., V.O., K.B., P.S., L.G.); Angiochem Inc., Montréal, Québec, Canada (G.Y., A.L., A.R., M.D.); and Quebec Pain Research Network, Sherbrooke, Québec, Canada (P.S., L.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gaoqiang Yang
Département de pharmacologie-physiologie, Institut de pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada (É.E., V.O., K.B., P.S., L.G.); Angiochem Inc., Montréal, Québec, Canada (G.Y., A.L., A.R., M.D.); and Quebec Pain Research Network, Sherbrooke, Québec, Canada (P.S., L.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alain Larocque
Département de pharmacologie-physiologie, Institut de pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada (É.E., V.O., K.B., P.S., L.G.); Angiochem Inc., Montréal, Québec, Canada (G.Y., A.L., A.R., M.D.); and Quebec Pain Research Network, Sherbrooke, Québec, Canada (P.S., L.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anthony Régina
Département de pharmacologie-physiologie, Institut de pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada (É.E., V.O., K.B., P.S., L.G.); Angiochem Inc., Montréal, Québec, Canada (G.Y., A.L., A.R., M.D.); and Quebec Pain Research Network, Sherbrooke, Québec, Canada (P.S., L.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michel Demeule
Département de pharmacologie-physiologie, Institut de pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada (É.E., V.O., K.B., P.S., L.G.); Angiochem Inc., Montréal, Québec, Canada (G.Y., A.L., A.R., M.D.); and Quebec Pain Research Network, Sherbrooke, Québec, Canada (P.S., L.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Philippe Sarret
Département de pharmacologie-physiologie, Institut de pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada (É.E., V.O., K.B., P.S., L.G.); Angiochem Inc., Montréal, Québec, Canada (G.Y., A.L., A.R., M.D.); and Quebec Pain Research Network, Sherbrooke, Québec, Canada (P.S., L.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Philippe Sarret
  • For correspondence: Philippe.Sarret@USherbrooke.ca
Louis Gendron
Département de pharmacologie-physiologie, Institut de pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada (É.E., V.O., K.B., P.S., L.G.); Angiochem Inc., Montréal, Québec, Canada (G.Y., A.L., A.R., M.D.); and Quebec Pain Research Network, Sherbrooke, Québec, Canada (P.S., L.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Louis Gendron
  • For correspondence: Louis.Gendron@USherbrooke.ca
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Article Figures & Data

Figures

  • Tables
  • Fig. 1.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig. 1.

    Brain uptake of radioactive morphine, An2-morphine, and An2-M6G measured by in situ brain perfusion. (A) Time course of brain uptake of [3H]-morphine, [125I]-An2-morphine and [125I]-An2-M6G. Representation of the Vd in brain homogenate. (B) Quantification of [3H]-morphine, [125I]-An2-morphine, and [125I]-An2-M6G in total brain, capillaries, and parenchymal fractions after 2 minutes of perfusion. Data represent mean ± S.E.M. (n = 3 to 4). **P < 0.01; ***P < 0.001; two-way ANOVA test followed by Tukey’s multiple comparison test.

  • Scheme 1.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Scheme 1.

    (A) Synthesis of (morphine-PEG)3-angiopep-2 (compound 3). (B) Synthesis of (M6G)3-angiopep-2 (compound 7).

  • Fig. 2.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig. 2.

    Antinociceptive effects of intravenous morphine and An2-morphine in the tail-flick assay. The antinociceptive effects of morphine and An2-morphine were evaluated by measuring the time to tail withdrawal in the tail-flick assay. Rats were treated intravenously with saline or with increasing doses of either morphine sulfate (MS) [0.3 mg/kg (n = 10), 1 mg/kg (n = 7), and 3 mg/kg (n = 10)] (A) or An2-morphine [0.3 mg/kg (n = 10), 1 mg/kg (n = 10), and 3 mg/kg (n = 9)] (D). For each dose, the %MPE was calculated for morphine and An2-morphine, as shown in (B and E), respectively. The AUC representing the total drug exposure across time (i.e., 120 minutes) after administration of increasing doses of MS is represented in (C), whereas the AUC of equimolar doses of An2-morphine is shown in (F). *P < 0.05; **P < 0.01; ****P < 0.0001 compared with the saline group; one-way ANOVA followed by Dunnett’s multiple comparisons test.

  • Fig. 3.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig. 3.

    Antinociceptive effects of intravenous M6G and An2-M6G in the tail-flick assay. The antinociceptive effects of M6G and An2-M6G were evaluated by measuring the time to tail withdrawal in the tail-flick assay. Rats were treated intravenously with saline or with increasing doses of either M6G [1.5 mg/kg (n = 10), 3 mg/kg (n = 7), and 4.5 mg/kg] (n = 10) (A) or An2-M6G [1.2 mg/kg (n = 6), 4 mg/kg (n = 9), 8 mg/kg (n = 5), and 12 mg/kg] (n = 6) (D). For each dose, the %MPE was calculated for M6G and An2-M6G (B and E). The AUC calculated for the whole period of time is represented in (C and F). *P < 0.05; **P < 0.01; ****P < 0.0001 compared with the saline group; one-way ANOVA followed by Dunnett’s multiple comparisons test.

  • Fig. 4.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig. 4.

    Antinociceptive effects of intravenous morphine, An2-morphine, morphine-6-glucuronide, and An2-M6G in the hot-plate test. The antinociceptive effects of morphine sulfate (MS), An2-morphine, M6G, and An2-M6G were evaluated by measuring the paw-licking behaviors of adult male CD1 mice in the thermal hot-plate assay. Mice were injected intravenously with saline, 10 mg/kg of MS or 30 mg/kg of An2-morphine (A) or saline, 1.5 mg/kg of morphine, 3 mg/kg of M6G, and 6 mg/kg of An2-M6G (n = 5 per group) (D). For each drug, the %MPE was calculated, as shown in (B and E). The AUC after administration of equimolar doses of MS and An2-morphine is represented in (C), whereas the AUC of equimolar doses of MS, M6G, and An2-M6G are shown in (F). **P < 0.01; ***P < 0.001; ****P < 0.0001 compared with saline group; #P < 0.05; ####P < 0.0001 compared with An2-M6G; one-way ANOVA test followed by Tukey’s multiple comparison test.

  • Fig. 5.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig. 5.

    Antinociceptive effects of subcutaneous morphine, An2-morphine, morphine-6-glucuronide, and An2-M6G in the tail-flick assay. The antinociceptive effects of morphine sulfate (MS), An2-morphine, M6G, and An2-M6G were evaluated by measuring the time to tail withdrawal in the tail-flick assay. Rats were injected subcutaneously with saline, 5 mg/kg of MS, or 20 mg/kg of An2-morphine (A) or saline, 3 mg/kg of morphine, 5 mg/kg of M6G, and 12 mg/kg of An2-M6G (n = 9 to 10 per condition) (D). For each drug, the %MPE was calculated, as shown in (B and E). The AUC after administration of equimolar doses of MS and An2-morphine is represented in (C), whereas the AUC of equimolar doses of MS, M6G, and An2-M6G is shown in (F). ***P < 0.001; ****P < 0.0001 compared with saline group; #P < 0.05; ####P < 0.0001 compared with MS group; $$P < 0.01; $$$P < 0.001; one-way ANOVA test followed by Tukey’s multiple comparison test. &, the baseline was used at 180 minutes to calculate the AUC of morphine group until 180 minutes.

Tables

  • Figures
    • View popup
    TABLE 1

    In vivo brain uptake of the compounds expressed in influx rate constant (Kin)

    CompoundsBrain Kin (ml/s per gram)
    ExperimentalTheoreticala
    Glucose9.5 × 10−3
    Morphine2.2 × 10−4
    An2-morphine2.7 × 10−3
    M6G2 × 10−5
    An2-M6G8.8 × 10−3
    • ↵a The M6G and glucose values used are from Wu et al. (1997).

    • View popup
    TABLE 2

    Effect of morphine, An2-M6G, and An2-morphine on the gastrointestinal tract motility

    Saline, MS (1, 5 and 10 mg/kg), An2-M6G (4 and 20 mg/kg), and An2-morphine (20 mg/kg) were injected subcutaneously 30 min before force-feeding with a charcoal meal solution. The progression of the charcoal meal in the intestine was measured 1 h after force-feeding.

    TreatmentSalineMorphine Sulfate (MS)An2-M6GAn2-morphine
    n10101010101010
    Dose (mg/kg)151042020
    Equimolar MS155.5
    Progression of the charcoal meal in the intestine (% ± S.E.M.)73.4 ± 2.258 ± 2.7*49.7 ± 2.7***28.6 ± 3.7****61.5 ± 3.359.7 ± 3.1$45.1 ± 5.1****
    • MS, morphine sulfate.

    • ↵* P < 0.05, ***P < 0.001, and ****P < 0.0001 compared with saline group; $P < 0.05 An2-M6G (20 mg/kg) compared with An2-morphine (20 mg/kg); Kruskal-Wallis nonparametric test followed by Dunn’s multiple comparison test.

PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 374 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 374, Issue 1
1 Jul 2020
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Use of a Noninvasive Brain-Penetrating Peptide-Drug Conjugate Strategy to Improve the Delivery of Opioid Pain Relief Medications to the Brain
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNeuropharmacology

An2-Morphine and An2-M6G Conjugates as Potent Analgesics

Émilie Eiselt, Valérie Otis, Karine Belleville, Gaoqiang Yang, Alain Larocque, Anthony Régina, Michel Demeule, Philippe Sarret and Louis Gendron
Journal of Pharmacology and Experimental Therapeutics July 1, 2020, 374 (1) 52-61; DOI: https://doi.org/10.1124/jpet.119.263566

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleNeuropharmacology

An2-Morphine and An2-M6G Conjugates as Potent Analgesics

Émilie Eiselt, Valérie Otis, Karine Belleville, Gaoqiang Yang, Alain Larocque, Anthony Régina, Michel Demeule, Philippe Sarret and Louis Gendron
Journal of Pharmacology and Experimental Therapeutics July 1, 2020, 374 (1) 52-61; DOI: https://doi.org/10.1124/jpet.119.263566
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Substituted Tryptamine Activity at 5-HT Receptors and SERT
  • KRM-II-81 Analogs
  • VTA muscarinic M5 receptors and effort-choice behavior
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics