Abstract
Nonalcoholic fatty liver disease is a chronic inflammatory liver disease. It is associated with obesity and type 2 diabetes. Oxycholesterols are metabolites of cholesterol, and several of them can act on the G protein–coupled receptor, G protein–coupled receptor 183 (GPR183)/Epstein-Barr virus-induced gene 2. We found expression of GPR183 in human hepatoma cell lines and in vivo induction of GPR183 expression in mouse livers after high-fat diet feeding. Therefore, the role of oxycholesterols and GPR183 in hepatocytes was studied using a model of hepatic steatosis induced by liver X receptor (LXR) activation. LXR activation by T0901317 resulted in fat accumulation in Hep3B human hepatoma cells. This lipid accumulation was inhibited by 7α,25-dihydroxycholesterol, the most potent agonist of GPR183. The protective effects of 7α,25-dihydroxycholesterol were suppressed by a specific GPR183 antagonist, NIBR189 [(2E)-3-(4-Bromophenyl)-1-[4-4-methoxybenzoyl)-1-piperazinyl]-2-propene-1-one]. T0901317 treatment induced expression of the major transcription factor for lipogenesis, sterol regulatory element-binding protein 1c (SREBP-1c). 7α,25-Dihydroxycholesterol inhibited the induction of SREBP-1c proteins in a GPR183-dependent manner. Using inhibitors specific for intracellular signaling molecules, 7α,25-dihydroxycholesterol–induced suppression of hepatocellular steatosis was shown to be mediated through Gi/o proteins, p38 mitogen-activated protein kinases, phosphoinositide 3-kinase, and AMP-activated protein kinase. In addition, the inhibitory effect of 7α,25-dihydroxycholesterol was validated in HepG2 cells and primary mouse hepatocytes. Therefore, the present report suggests that 7α,25-dihydroxycholesterol–GPR183 signaling may suppress hepatocellular steatosis in the liver.
SIGNIFICANCE STATEMENT Oxycholesterols, which are metabolites of cholesterol, act on the G protein–coupled receptor, G protein–coupled receptor 183 (GPR183)/Epstein-Barr virus-induced gene 2, which is expressed in human hepatoma cell lines, and its expression is induced in vivo in mouse livers after high-fat diet feeding. Activation of GPR183 inhibits fat accumulation in primary mouse hepatocytes and HepG2 cells through Gi/o proteins, p38 mitogen-activated protein kinases, phosphoinositide 3-kinase, and AMP-activated protein kinase.
Footnotes
- Received January 2, 2020.
- Accepted October 4, 2020.
↵1 Current affiliation: Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
↵2 J.H., S.-J.L., and S.K. contributed equally to this study.
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology [2019R1D1A2C1005523].
Conflict of interest: The authors declare that there is no conflict of interest.
↵
This article has supplemental material available at jpet.aspetjournals.org.
- Copyright © 2020 by The American Society for Pharmacology and Experimental Therapeutics
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|