Abstract
Recently, we confirmed that in human aortic valve interstitial cells (HAVICs) isolated from patients with aortic valve stenosis (AVS), calcification is induced in high inorganic phosphate (high-Pi) medium by warfarin (WFN). Because WFN is known as a vitamin K antagonist, reducing the formation of blood clots by vitamin K cycle, we hypothesized that vitamin K regulates WFN-induced HAVIC calcification. Here, we sought to determine whether WFN-induced HAVIC calcification in high-Pi medium is inhibited by menaquinone-4 (MK-4), the most common form of vitamin K2 in animals. HAVICs obtained from patients with AVS were cultured in α-modified Eagle’s medium containing 10% FBS, and when the cells reached 80%–90% confluency, they were further cultured in the presence or absence of MK-4 and WFN for 7 days in high-Pi medium (3.2 mM Pi). Intriguingly, in high-Pi medium, MK-4 dose-dependently accelerated WFN-induced HAVIC calcification and also accelerated the calcification when used alone (at 10 nM). Furthermore, MK-4 enhanced alkaline phosphatase (ALP) activity in HAVICs, and 7 days of MK-4 treatment markedly upregulated the gene expression of the calcification marker bone morphogenetic protein 2 (BMP2). Notably, MK-4–induced calcification was potently suppressed by two pregnane X receptor (PXR) inhibitors, ketoconazole and coumestrol; conversely, PXR activity was weakly increased, but in a statistically significant and dose-dependent manner, by MK-4. Lastly, in physiologic-Pi medium, MK-4 increased BMP2 gene expression and accelerated excess BMP2 (30 ng/ml)-induced HAVIC calcification. These results suggest that MK-4, namely vitamin K2, accelerates calcification of HAVICs from patients with AVS like WFN via PXR-BMP2-ALP pathway.
SIGNIFICANCE STATEMENT For aortic valve stenosis (AVS) induced by irreversible valve calcification, the most effective treatment is surgical aortic or transcatheter aortic valve replacement, but ∼20% of patients are deemed unsuitable because of its invasiveness. For effective drug treatment strategies for AVS, the mechanisms underlying aortic valve calcification must be elucidated. Here, we show that menaquinone-4 accelerates warfarin-induced calcification of AVS-patient human aortic valve interstitial cells in high inorganic phosphate medium; this effect is mediated by pregnane X receptor–bone morphogenetic protein 2–alkaline phosphatase signaling, which could be targeted for novel drug development.
Footnotes
- Received October 9, 2019.
- Accepted December 11, 2019.
↵1 W.Y. and Z.Y. contributed equally to this work.
This work was supported by JSPS KAKENHI [Grants 24590310, 16K10619, 16K10449, 17K10916, 18K16381, 19K09089] and by grants-in-aid from The Cardiovascular Research Fund, Tokyo, Japan.
↵This article has supplemental material available at jpet.aspetjournals.org.
- Copyright © 2020 by The American Society for Pharmacology and Experimental Therapeutics