Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNeuropharmacology

Novel Adenosine Analog, N6-(4-Hydroxybenzyl)-Adenosine, Dampens Alcohol Drinking and Seeking Behaviors

Sa-Ik Hong, Lee Peyton, Yijuang Chern and Doo-Sup Choi
Journal of Pharmacology and Experimental Therapeutics November 2019, 371 (2) 260-267; DOI: https://doi.org/10.1124/jpet.119.261529
Sa-Ik Hong
Department of Molecular Pharmacology and Experimental Therapeutics (S.-I.H., L.P., D.-S.C.), Neuroscience Program (D.-S.C.), and Department of Psychiatry and Psychology (D.-S.C.), Mayo Clinic College of Medicine, Rochester, Minnesota; and Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (Y.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lee Peyton
Department of Molecular Pharmacology and Experimental Therapeutics (S.-I.H., L.P., D.-S.C.), Neuroscience Program (D.-S.C.), and Department of Psychiatry and Psychology (D.-S.C.), Mayo Clinic College of Medicine, Rochester, Minnesota; and Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (Y.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yijuang Chern
Department of Molecular Pharmacology and Experimental Therapeutics (S.-I.H., L.P., D.-S.C.), Neuroscience Program (D.-S.C.), and Department of Psychiatry and Psychology (D.-S.C.), Mayo Clinic College of Medicine, Rochester, Minnesota; and Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (Y.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Doo-Sup Choi
Department of Molecular Pharmacology and Experimental Therapeutics (S.-I.H., L.P., D.-S.C.), Neuroscience Program (D.-S.C.), and Department of Psychiatry and Psychology (D.-S.C.), Mayo Clinic College of Medicine, Rochester, Minnesota; and Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (Y.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Adenosine signaling is associated with ethanol-related behaviors. We previously found that adenosine A2A receptor (A2AR) activation dampens ethanol drinking behaviors in equilibrative nucleoside transporter 1 (ENT1) knockout mice, and A2AR inhibition augments reward-seeking behavior in wild-type mice. The novel adenosine analog N6-(4-hydroxybenzyl)-adenosine (NHBA), which is isolated from the rhizomes of Gastrodia elata, activates A2AR and inhibits ENT1. Here, we examined the effects of NHBA on ethanol drinking in the two-bottle choice test and operant ethanol seeking behaviors. We selected mice exhibiting high ethanol drinking behavior in the two-bottle choice test. NHBA (0.1 mg/kg, i.p.) reduced ethanol drinking behavior in a limited-access 3-hour drinking session in high-consumption ethanol drinking mice, and NHBA (0.1 mg/kg, i.p.) did not alter locomotor activity in the open-field test. Operant conditioning with 10% ethanol and 10% sucrose (10E10S) reward increased zone entries and time spent in the ethanol zone, while NHBA (0.1 mg/kg, i.p.) dampened ethanol zone preference in the Y-maze. Furthermore, NHBA (0.1 mg/kg, i.p.) devalued 10E10S and 10% ethanol (10E) reward after operant conditioning with 10E10S and 10E. Taken together, NHBA through A2AR activation and ENT1 modulation may dampen ethanol drinking and seeking behaviors, suggesting that NHBA is a potential therapeutic agent for treating alcohol use disorder.

SIGNIFICANCE STATEMENT Our work highlights that A2AR activation and ENT1 inhibition by a novel adenosine analog isolated from Gastrodia elata, N6-(4-hydroxybenzyl)-adenosine, decreases ethanol drinking and seeking behaviors. We suggest that NHBA is a potential therapeutic agent to treat alcohol use disorder.

Footnotes

    • Received July 15, 2019.
    • Accepted August 9, 2019.
  • ↵1 S.-I.H. and L.P. contributed equally to this work.

  • This work was supported by the Samuel C. Johnson for Genomics of Addiction Program at Mayo Clinic, the Ulm Foundation, the Godby Foundation, and National Institutes of Health National Institute on Alcohol Abuse and Alcoholism (Grant 5R01AA018779).

  • https://doi.org/10.1124/jpet.119.261529.

  • Copyright © 2019 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 371 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 371, Issue 2
1 Nov 2019
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Novel Adenosine Analog, N6-(4-Hydroxybenzyl)-Adenosine, Dampens Alcohol Drinking and Seeking Behaviors
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNeuropharmacology

Adenosine Analog in Ethanol Drinking and Seeking

Sa-Ik Hong, Lee Peyton, Yijuang Chern and Doo-Sup Choi
Journal of Pharmacology and Experimental Therapeutics November 1, 2019, 371 (2) 260-267; DOI: https://doi.org/10.1124/jpet.119.261529

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleNeuropharmacology

Adenosine Analog in Ethanol Drinking and Seeking

Sa-Ik Hong, Lee Peyton, Yijuang Chern and Doo-Sup Choi
Journal of Pharmacology and Experimental Therapeutics November 1, 2019, 371 (2) 260-267; DOI: https://doi.org/10.1124/jpet.119.261529
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Competing Interests:
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Disease-Modifying Effects of Neurosteroids in Post-SE Models
  • Lacosamide and Rufinamide Against SE
  • A pediatric rat model of OP-induced status epilepticus
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics