Visual Overview
Abstract
Idiopathic pulmonary fibrosis is a progressive fibrotic lung disease, and eventually most patients develop respiratory failure with a median survival rate of 2 to 3 years after diagnosis due to the lack of clinically effective therapies. Mogroside IIIE (MGIIIE), a cucurbitane-type compound, was isolated from Siraitia grosvenorii. MGIIIE has shown the strongest inhibition of nitric oxide release, a crucial inflammatory factor, from lipopolysaccharide (LPS)-treated RAW264.7 cells compared with other mogrosides. In the pulmonary fibrosis mouse model induced by bleomycin, MGIIIE treatment attenuated pulmonary fibrosis, indicated as a reduction in myeloperoxidase activity, collagen deposition, and pathologic score. MGIIIE also significantly suppressed expression of several important fibrotic markers, e.g., α-smooth muscle actin, collagen I, transforming growth factor-β (TGF-β) signal, and metalloproteinases-9/tissue inhibitor of metalloproteinase-1. Furthermore, MGIIIE blocked tansdifferentiation of lung resident fibroblasts into myofibroblast-like cells induced by TGF-β or LPS and subsequently inhibited collagen production in lung fibroblasts. These data indicate that MGIIIE is a potent inhibitor for pulmonary fibrosis. In vitro and in vivo mechanistic studies have shown that MGIIIE significantly decreased expression of toll-like receptor 4 (TLR4) and its downstream signals of myeloid differentiation factor 88 (MyD88)/mitogen-activated protein kinase (MAPK), an inflammatory signal essential for extracellular matrix (ECM) deposition in pulmonary fibroblasts. Taken together, these results demonstrate that MGIIIE significantly prevents pulmonary fibrosis by inhibiting pulmonary inflammation and ECM deposition through regulating TLR4/MyD88-MAPK signaling. Our study suggests that MGIIIE may have therapeutic potential for treating pulmonary fibrosis in clinical settings.
Footnotes
- Received November 30, 2016.
- Accepted March 7, 2017.
This work was financially supported by the National Natural Science Foundation of China [81573553] to C.F., the National New Drug Innovation Major Project of China [2011ZX09307-002-02], the Priority Academic Program Development of Jiangsu Higher Education Institutions, and National Found for Fostering Talents of Basic Science [J1310032] in China; and the American Heart Association [12SDG9050018] to Y.G. in the United States.
- Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|