Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleCellular and Molecular

Dynamic Regulation of Homer Binding to Group I Metabotropic Glutamate Receptors by Preso1 and Converging Kinase Cascades

Jia-Hua Hu, Paul F. Worley and Paul J. Kammermeier
Journal of Pharmacology and Experimental Therapeutics April 2017, 361 (1) 122-129; DOI: https://doi.org/10.1124/jpet.116.238394
Jia-Hua Hu
Section on Molecular Neurophysiology and Biophysics, Eunice Kennedy Shriver National Institutes of Health National Institute of Child Health and Human Development, Rockville, Maryland (J.-H.H.); Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland (P.F.W.); and Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York (P.J.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul F. Worley
Section on Molecular Neurophysiology and Biophysics, Eunice Kennedy Shriver National Institutes of Health National Institute of Child Health and Human Development, Rockville, Maryland (J.-H.H.); Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland (P.F.W.); and Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York (P.J.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul J. Kammermeier
Section on Molecular Neurophysiology and Biophysics, Eunice Kennedy Shriver National Institutes of Health National Institute of Child Health and Human Development, Rockville, Maryland (J.-H.H.); Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland (P.F.W.); and Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York (P.J.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In rat sympathetic neurons from the superior cervical ganglia (SCG) expressing metabotropic glutamate receptor mGluR1 or mGluR5, overexpression of scaffolding Homer proteins, which bind to a Homer ligand in their C termini, cause receptor clustering and uncoupling from ion channel modulation. In the absence of recombinant Homer protein overexpression, uncoupling of mGluRs from voltage-dependent channels can be induced by expression of Preso1, an adaptor of proline-directed kinases that phosphorylates the Homer ligand and recruits binding of endogenous Homer proteins. Here we show that in SCG neurons expressing mGluR1 and the tyrosine receptor kinase B, treatment with brain-derived neurotrophic factor (BDNF) produces a similar uncoupling of the receptors from calcium channels. We investigated the pathways that mediate this uncoupling and compared it with uncoupling observed with Preso1 expression. Both BDNF- and Preso1-induced uncoupling require residues T1151 and S1154 in the mGluR1 Homer ligand (TPPSPF). Uncoupling via Preso1 but not BDNF was prevented by expression of a dominant negative Cdk5, suggesting that endogenous Cdk5 mediates Preso1-dependent phosphorylation of mGluR1. Dominant negative Cdk5 did not block the BDNF effect but this was sensitive to inhibitors of the mitogen-activated protein kinase kinase/extracellular signal–regulated kinase cascade. Interestingly, the BDNF pathway appeared to require native Preso1 binding to mGluR, because overexpression of the Preso1 FERM domain, which mediates the Preso1–mGluR interaction, prevented BDNF-induced uncoupling. These data suggest that the BDNF/tyrosine receptor kinase B and Cdk5 pathways converge at the level of mGluR to similarly induce Homer ligand phosphorylation, recruit Homer binding, and uncouple mGluRs from channel regulation.

Footnotes

    • Received October 18, 2016.
    • Accepted February 2, 2017.
  • This research was supported by the National Institutes of Health National Institute of General Medical Sciences [Grant R01GM101023 (to P.J.K.)].

  • dx.doi.org/10.1124/jpet.116.238394.

  • U.S. Government work not protected by U.S. copyright
View Full Text
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 361 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 361, Issue 1
1 Apr 2017
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Dynamic Regulation of Homer Binding to Group I Metabotropic Glutamate Receptors by Preso1 and Converging Kinase Cascades
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleCellular and Molecular

Phosphorylation of the mGluR Homer Binding Site by Kinases

Jia-Hua Hu, Paul F. Worley and Paul J. Kammermeier
Journal of Pharmacology and Experimental Therapeutics April 1, 2017, 361 (1) 122-129; DOI: https://doi.org/10.1124/jpet.116.238394

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleCellular and Molecular

Phosphorylation of the mGluR Homer Binding Site by Kinases

Jia-Hua Hu, Paul F. Worley and Paul J. Kammermeier
Journal of Pharmacology and Experimental Therapeutics April 1, 2017, 361 (1) 122-129; DOI: https://doi.org/10.1124/jpet.116.238394
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Chlorogenic Acid Inhibits Breast Cancer Metastasis
  • SNAP25 and mGluRs Control Pathological Tau Release
  • N-Stearoylethanolamine Inhibits Platelet Reactivity
Show more Cellular and Molecular

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics