Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleMetabolism, Transport, and Pharmacogenomics
Open Access

Delineating the Role of Various Factors in Renal Disposition of Digoxin through Application of Physiologically Based Kidney Model to Renal Impairment Populations

Daniel Scotcher, Christopher R. Jones, Aleksandra Galetin and Amin Rostami-Hodjegan
Journal of Pharmacology and Experimental Therapeutics March 2017, 360 (3) 484-495; DOI: https://doi.org/10.1124/jpet.116.237438
Daniel Scotcher
Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (D.S., A.G., A.R.-H.); DMPK, Oncology iMed, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, United Kingdom (C.R.J.); and Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield, United Kingdom (A.R.-H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christopher R. Jones
Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (D.S., A.G., A.R.-H.); DMPK, Oncology iMed, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, United Kingdom (C.R.J.); and Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield, United Kingdom (A.R.-H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Aleksandra Galetin
Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (D.S., A.G., A.R.-H.); DMPK, Oncology iMed, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, United Kingdom (C.R.J.); and Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield, United Kingdom (A.R.-H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Amin Rostami-Hodjegan
Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (D.S., A.G., A.R.-H.); DMPK, Oncology iMed, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, United Kingdom (C.R.J.); and Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield, United Kingdom (A.R.-H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Visual Overview

Figure1
  • Download figure
  • Open in new tab
  • Download powerpoint

Abstract

Development of submodels of organs within physiologically-based pharmacokinetic (PBPK) principles and beyond simple perfusion limitations may be challenging because of underdeveloped in vitro-in vivo extrapolation approaches or lack of suitable clinical data for model refinement. However, advantage of such models in predicting clinical observations in divergent patient groups is now commonly acknowledged. Mechanistic understanding of altered renal secretion in renal impairment is one area that may benefit from such models, despite knowledge gaps in renal pathophysiology. In the current study, a PBPK kidney model was developed for digoxin, accounting for the roles of organic anion transporting peptide 4C1 (OATP4C1) and P-glycoprotein (P-gp) in its tubular secretion, with the aim to investigate the impact of age and renal impairment (moderate to severe) on renal drug disposition. Initial PBPK simulations based on changes in glomerular filtration rate (GFR) underestimated the observed reduction in digoxin renal excretion clearance (CLR) in subjects with moderately impaired renal function relative to healthy. Reduction in either proximal tubule cell number or the OATP4C1 abundance in the mechanistic kidney model successfully predicted 59% decrease in digoxin CLR, in particular when these changes were proportional to reduction in GFR. In contrast, predicted proximal tubule concentration of digoxin was only sensitive to changes in the transporter expression/ million proximal tubule cells. Based on the mechanistic modeling, reduced proximal tubule cellularity and OATP4C1 abundance, and inhibition of OATP4C1-mediated transport, are proposed as possible causes of reduced digoxin renal secretion in renally impaired patients.

Footnotes

    • Received August 25, 2016.
    • Accepted December 20, 2016.
  • ↵1 Current afiliation: Heptares Therapeutics Limited, BioPark, Welwyn Garden City, Hertfordshire, UK.

  • D.S. was supported by a PhD studentship from the Biotechnology and Biological Sciences Research Council UK (BB/J500379/1) and AstraZeneca, Cambridge, UK.

  • dx.doi.org/10.1124/jpet.116.237438

  • ↵Embedded ImageThis article has supplemental material available at jpet.aspetjournals.org.

  • Copyright © 2017 by The Author(s)

This is an open access article distributed under the CC BY Attribution 4.0 International license.

View Full Text
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 360 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 360, Issue 3
1 Mar 2017
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Delineating the Role of Various Factors in Renal Disposition of Digoxin through Application of Physiologically Based Kidney Model to Renal Impairment Populations
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleMetabolism, Transport, and Pharmacogenomics

PBPK Kidney Model of Digoxin and Renal Impairment

Daniel Scotcher, Christopher R. Jones, Aleksandra Galetin and Amin Rostami-Hodjegan
Journal of Pharmacology and Experimental Therapeutics March 1, 2017, 360 (3) 484-495; DOI: https://doi.org/10.1124/jpet.116.237438

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleMetabolism, Transport, and Pharmacogenomics

PBPK Kidney Model of Digoxin and Renal Impairment

Daniel Scotcher, Christopher R. Jones, Aleksandra Galetin and Amin Rostami-Hodjegan
Journal of Pharmacology and Experimental Therapeutics March 1, 2017, 360 (3) 484-495; DOI: https://doi.org/10.1124/jpet.116.237438
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Visual Overview
    • Abstract
    • Introduction
    • Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • HDL Mimetic 4F Modulates Aβ Distribution in Brain and Plasma
  • AOX1 Inhibition by Gefitinib, Erlotinib, and Metabolites
  • Catalytic Activity of CYP2C9 Variants
Show more Metabolism, Transport, and Pharmacogenomics

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics