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ABSTRACT
In this work, we first describe the population variability in hepatic
drug metabolism using cryopreserved hepatocytes from five
different donors cultured in a perfused three-dimensional human
liver microphysiological system, and then show how the re-
sulting data can be integrated with a modeling and simulation
framework to accomplish in vitro–in vivo translation. For each
donor, metabolic depletion profiles of six compounds (phenac-
etin, diclofenac, lidocaine, ibuprofen, propranolol, and prednis-
olone) were measured, along with metabolite formation, mRNA
levels of 90metabolism-related genes, andmarkers of functional
viability [lactate dehydrogenase (LDH) release, albumin, and urea
production]. Drug depletion data were analyzed with mixed-
effectsmodeling. Substantial interdonor variability was observed
with respect to gene expression levels, drug metabolism, and
other measured hepatocyte functions. Specifically, interdonor

variability in intrinsic metabolic clearance ranged from 24.1% for
phenacetin to 66.8% for propranolol (expressed as coefficient of
variation). Albumin, urea, LDH, and cytochrome P450 mRNA
levels were identified as significant predictors of in vitro meta-
bolic clearance. Predicted clearance values from the liver micro-
physiological system were correlated with the observed in vivo
values. A population physiologically based pharmacokinetic
model was developed for lidocaine to illustrate the translation of
the in vitro output to the observed pharmacokinetic variability
in vivo. Stochastic simulations with this model successfully
predicted the observed clinical concentration-time profiles and
the associated population variability. This is the first study of
population variability in drug metabolism in the context of a
microphysiological system and has important implications for
the use of these systems during the drug development process.

Introduction
During preclinical drug development, prediction of hepatic

clearance is of significant importance to set the first human
dose and guide the selection of dosage regimens that achieve
drug concentrations within the therapeutic window. However,
to efficiently design clinical studies, it is crucial to predict
hepatic drug metabolism and human pharmacokinetics, not
only at the level of an “average individual” but also accounting
for the associated population variability (Jamei et al., 2009).
To investigate interindividual variability in vitro, drug-

metabolism assays must be performed independently for hepa-
tocytes obtained from different donors and with an appropriate
statistical analysis of the obtained data to estimate the inter-
donor variability in intrinsic clearance disentangled from mea-
surement error/uncertainty and any other types of variability
(e.g., interwell). Additionally, the estimate of interindividual

variability in intrinsic metabolic clearance, as assessed in vitro,
needs to be coupled with the population variability associated
with other physiologic processes in vivo (e.g., hepatic blood flow,
drug binding to plasma proteins, etc.). Thus, to perform in vivo
predictions at the population level, a systems pharmacology
approach (Trame et al., 2016) is desirable, where the in vitro
results are integrated into population physiologically based
pharmacokinetic (PBPK) models (Rostami-Hodjegan, 2012;
Jones and Rowland-Yeo, 2013; Tsamandouras et al., 2015a,b).
Several in vitro systems have been traditionally applied to

study drug metabolism, including human liver microsomes
(Obach, 1999) and cryopreserved human hepatocyte suspen-
sions (Brown et al., 2007). Although these systems have been
very valuable in drug development (Di et al., 2012) and are
easy to use, they lose metabolic activity over time, hence the
study of low-clearance compounds is challenging (Di and
Obach, 2015; Hutzler et al., 2015). In addition, overall these
in vitro systems tend to underpredict in vivo clearance
(Hallifax et al., 2010). Finally, drug-metabolism studies are
often performed in human liver microsomes or hepatocytes
pooled from several donors. Thus, the predicted intrinsic
clearance refers to an “average individual,” and the associ-
ated interindividual variability is not obtained.
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Recently, new hepatic in vitro culture models have emerged
to improve physiologic responses andmitigate the rapid loss of
metabolic function typically observed in culture, thus offering
opportunity to improve predictions of human drug clearance,
especially for low-clearance compounds. Whereas static two-
dimensional cocultures of hepatocytes with other cell types
show some stabilization of function, a variety of three-
dimensional (3D) culture models incorporating perfusion flow
exhibit prolonged viability and function under serum-free condi-
tions (Ebrahimkhani et al., 2014). Such 3D perfused models of
liver and other tissues, where microfluidic or microscale reactors
are used to control the flow of culture medium, are often termed
“microphysiological systems” (MPS) or “organs on chips.” In this
work, we use a particular well developed, commercially available
microreactor system for 3D perfused liver culture, the LiverChip
(CN Bio Innovations, Hertfordshire, UK) (Dash et al., 2009;
Domansky et al., 2010; Sarkar et al., 2015; Vivares et al., 2015).
The LiverChip comprises a scaffold that fosters formation of an
array of∼0.2-mm3D tissue structures fromprimary human liver
cells, and an on-board microfluidic pumping system, driven by
pneumatics, that precisely perfuses the scaffold with culture
medium to control oxygenation and shear stress on the tissue,
enabling long-term culture with retention of physiological re-
sponses (Dash et al., 2009; Domansky et al., 2010; Vivares et al.,
2015). The LiverChip platform, seeded with hepatocytes or with
mixtures of hepatocytes and nonparenchymal cells, has been
applied to analyze drug metabolism, inflammatory effects, drug-
drug interactions, and as a model of breast cancer metastasis to
the liver (Wheeler et al., 2014; Sarkar et al., 2015; Vivares et al.,
2015; Long et al., 2016).
The current work first focuses on the in vitro assessment of

population variability in drug metabolism and the relation-
ship of that with variability in other phenotypic metrics, such
as production of liver-specific factors (e.g., albumin, urea)
and expression of metabolism-related genes. In vitro exper-
iments were performed in a liver microphysiological system,
housed in the LiverChip platform, utilizing hepatocytes from
different donors. The ability of pooled hepatocytes to reca-
pitulate the average phenotype across the different donors
was also assessed. Since the purpose of investigating me-
tabolism in vitro is to predict human pharmacokinetics, we
follow up by integrating the generated data with a compu-
tational modeling and simulation framework to attempt
in vitro to in vivo translation of population variability in
drug metabolism.

Materials and Methods
3D Hepatocyte Tissue Culture. All sources of chemicals and

reagents used are reported in the Supplemental Material (section
1.1). Cryopreserved human primary hepatocytes from five different
donors were purchased from Life Technologies (Paisley UK). All
donors (threemales, two females) were Caucasians spanning a 21–72
years age range. Cells were recovered according to the supplier’s
instructions. Viability was assessed using trypan blue exclusion and
was .85% for all lots. Hepatocyte suspensions were seeded (6 � 105

cells per scaffold) into scaffolds housed in the LiverChip in a total
volume of 1.6 ml per compartment. Primary human hepatocytes from
the five different donors were cultured, as well as a pooled hepatocyte
sample, which contained equal numbers of cells from each of the five
donors. In total, 21 wells were seeded for each donor and the pooled
sample, from which 18 were intended for the drug-metabolism study
(6 compounds � 3 replicate wells) and three were intended to be

sacrificed at day 6 for RNA analysis. After the initial attachment
period, cells undergo morphogenesis to form an array of 3D micro-
tissues within the channels of the scaffold over a period of 3 days.
Cells were maintained in Williams’ E medium containing primary
hepatocyte thawing and plating supplements (Life Technologies) for
the first day of culture. Maintenance supplements (Life Technolo-
gies), which are serum-free, were used thereafter. All cultures were
maintained in a standard humidified atmosphere at 37°C with 5%
CO2 and had a first completemedium change at 24 hours, then after a
further 72 hours.

Hepatocyte Culture Phenotypic Characterization. Albumin
and urea production as well as lactate dehydrogenase (LDH) release
were measured before the drug-metabolism study (4 days postseed-
ing). Albumin production wasmeasured in supernatant using a human
albumin enzyme-linked immunosorbent assay (Assay Pro, St. Charles,
MO). Urea was quantified with a colorimetric assay kit (BioAssay
Systems, Hayward, CA) and LDH secretion was measured using the
CytoTox 96 nonradioactive cytotoxicity assay (Promega, Southampton,
UK). Albumin, urea, and LDH were also measured postdose at the end
of the drug-metabolism study (day 5 for wells treated with phenacetin;
day 6 for wells treated with diclofenac, propranolol, lidocaine, and
ibuprofen; and day 7 for wells treated with prednisolone). At the end of
the experiment, the scaffolds/tissues were removed and washed with
phosphate-buffered saline. Bright field images were taken using an
inverted light microscope (Leica, Milton Kaynes, UK).

RNA Isolation and Gene Expression Analysis. Total RNAwas
extracted from freshly thawed hepatocytes or from LiverChip scaf-
folds cultured for 6 days (run in parallel to the drug-metabolism study
without the addition of any drug) using TRIzol Reagent (Ambion,
Loughborough, UK) and a chloroform phase separation. Quantitative
polymerase chain reaction (PCR) was performed using SYBR Green
PCR Master Mix (Applied Biosystems, Loughborough, UK) and
primers designed against transcripts related to hepatic genes of
specific interest (Supplemental Table S1). Samples were analyzed
using a QuantStudio 6 real-time PCR system (Applied Biosystems,
UK). Ct values from samples were compared and normalized to
GAPDH expression. Samples were also analyzed by RT2 Profiler
PCR Arrays (Qiagen, Manchester, UK). Reverse transcription was
performed using RT2 First Strand Kit, and cDNA was analyzed by
Human Drug Metabolism (PAHS-002ZC-12) RT2 Profiler PCR
Arrays. Ct values from samples were compared and normalized to
the average expression across five different housekeeping genes
(ACTB, B2M, GAPDH, HPRT1, and RPLP0). The quantitative PCR
and super-array data (referring to 6 and 84 genes, respectively) were
merged to generate a data set of 90 genes, the expression of which
was investigated. The complete methods regarding RNA isolation
and the gene-expression analysis are provided in the Supplemental
Material (section 1.2).

Drug-Metabolism Study. At day 4, six different compounds
(phenacetin, diclofenac, lidocaine, ibuprofen, propranolol, and prednis-
olone) were added as a bolus dose to the microtissues at an initial
concentration of 1 mM during a full medium change (final volume
per well was 1.8 ml), and the final solvent (dimethylsulfoxide)
concentration never exceeded 0.1% (v/v). Supernatant samples (60 ml)
(i.e., corresponding to the extracellular compartment) were taken at
predetermined postdose sampling times (0, 1, 4, 6, and 24 hours
for phenacetin; 0, 1, 4, 24, and 48 hours for diclofenac, propranolol,
lidocaine, and ibuprofen; and 0, 4, 24, 48, and 72 hours for predniso-
lone). For the time 0 measurements, a sample was taken from each
culture well immediately (instantaneously) after the addition of the
drug-containing medium to accurately evaluate the initial drug
concentration in each well. All samples were analyzed for the
presence of the dosed compound. Additionally, metabolite formation
was measured for phenacetin (acetaminophen), diclofenac (4-OH-
diclofenac), ibuprofen (2-OH-ibuprofen), and prednisolone (6b-OH-
prednisolone). Extensive details regarding sample preparation and
the liquid chromatography–tandem mass spectrometry analysis are
provided in the Supplemental Material (section 1.3).
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Investigation of Drug Binding to the Platform and Tissue
Culture Medium. The compounds were also added to LiverChip
wells containing no hepatocytes to analyze nonspecific binding to
plate components. Each well was treated in the same way as the
wells containing microtissues. Sixty-microliter samples were taken
from these plates at 0, 1, and 48 hours postdosing, and samples were
treated and analyzed for the presence of the dosed compound as
described in the Supplemental Material (section 1.3).

Unbound drug fraction in the bovine serum albumin-containing cell
culture medium was quantified by rapid equilibrium dialysis. Details
are provided in the Supplemental Material (section 1.4).

Pharmacokinetic Analysis of the Drug Depletion Data. The
drug depletion data corresponding to individual donors were analyzed
with a population pharmacokinetic modeling approach using nonlin-
ear mixed-effects modeling software (NONMEM 7.3; ICON Develop-
ment Solutions, Ellicott City, MD) and the first-order conditional
estimation method with interaction. A one-compartment pharmaco-
kinetic model (model of monoexponential decay) was used to fit the
drug depletion data (eq. 1):

Cijk 5Cij
0 ×e

2

 
fumed ×CL

ij
intðuÞ

Vmed

!
×tijk

(1)

where Cijk is the model prediction for the kth observed concentration
regarding the ith donor and the jth well, sampled at time tijk;C

ij
0 is the

substrate concentration in the medium at time 0 regarding the ith
donor and the jth well (experimentally measured by sampling each
well instantaneously after the addition of the drug-containing me-
dium); Vmed is the volume of the medium during the substrate
depletion experiment (1.8 ml); fumed is the fraction of drug which is
unbound in the medium and thus available for metabolism (experi-
mentally determined with equilibrium dialysis); and CLij

intðuÞ is the
unbound intrinsic clearance regarding the ith donor and the jth well.
Both interdonor variability (IDV) and interwell variability (IWV)were
taken into account during the estimation of unbound intrinsic
clearance using an exponential relationship (see eq. 2), which assumes
that clearance is log-normally distributed:

CLij
intðuÞ 5CLintðuÞ×ehi 1kij (2)

where CLintðuÞ is the typical (median) value of unbound intrinsic
clearance across all donors/wells; hi is the random effect referring to
between-donor differences (thus IDV); and kij is the random effect
referring to between-well differences within a donor (thus IWV). Both
h and k are assumed to be independently normally distributed with
mean 0 and variance v2and p2, respectively. A common variance was
assumed for all wells using the SAMEoption inNONMEM.Finally, an
additional level of variability was taken into account, termed residual
variability, using an additive error model on the scale of the log-
transformed observations/predictions (see eq. 3):

ln
�
Cijk

obs

�
5 ln

�
Cijk�1 «ijk (3)

where Cijk
obs is the kth observed concentration regarding the ith donor and

the jthwell, sampled at time tijk;Cijk is the respectivemodel prediction (see
eq. 1);«ijkis the random effect referring to residual variability and thus the
differences between the observed concentrations and themodel predictions
due to unexplained factors (e.g., measurement/assay error, model mis-
specification, etc.); and « is assumed to be normally distributed with mean
0 and variance s2. Typical goodness-of-fit plots (e.g., observations versus
predictions, residuals versus time/predictions) and simulation-based diag-
nostics (e.g., visual predictive checks) were used to detect the adequacy of
the developed mixed-effects models (Karlsson and Savic, 2007).

The drug depletion data corresponding to the pooled hepatocytes
where subsequently analyzed in a similar framework, with the difference
that, in thepooledhepatocytes data, the only level of variability inCLintðuÞ
is the IWV.

Identification of In Vitro Clearance Predictors. The normal-
ized (see SupplementalMaterial, section 1.5) values of intrinsic clearance
obtained across different donors/wells were investigated in relation to the
values of the respective predose phenotypic metrics (albumin/urea pro-
duction, LDH release) and donor-specific mRNA levels of the primary for
the metabolism of each compound cytochrome P450 (P450). All method-
ological details regarding this investigation are provided in the Supple-
mental Material (section 1.5).

Prediction of In Vivo Hepatic Clearance. The typical values of
unbound intrinsic clearance [CLintðuÞ] determined for each compound
from the pharmacokinetic analysis of the individual-donor in vitro
data were subsequently used to derive a prediction with regard to the
in vivo hepatic clearance. These predicted hepatic clearance values
were then compared with clinically observed values, and the overall
agreement was determined by the calculation of the average fold-error
across all compounds. All of the relatedmethodological details and the
complete procedure (equations) used for in vitro–in vivo extrapolation
of clearance are reported in the Supplemental Material (section 1.6).

Population In Vitro–In Vivo Translation with the Aid of
PBPK Modeling. A population PBPK model for lidocaine was de-
veloped to illustrate the framework under which the liver MPS data can
be translated to predictions of in vivo concentration-time profiles at the
population level. The rationale for selection of lidocaine among the other
in vitro evaluated compounds is described in the Supplemental Material
(section 1.7). Each tissue/organ of the developed PBPK model was
assumed to be a well stirred compartment with perfusion-limited
kinetics, and the liver was considered as the only site of elimination
(Supplemental Fig. S1). Renal clearancewas assumed to be negligible, as
only around 8% of the drug is excreted unchanged in urine (Benet et al.,
2011). An empirical scaling factor (determined across all compounds
evaluated in this work) was incorporated on the in vitro–determined
hepatic clearance of lidocaine with the aim of correcting for any
systematic underprediction of in vivo clearance with the used in vitro
system (SupplementalMaterial, sections 1.6 and 1.10). The PBPKmodel
was mathematically described with a system of 14 mass balance
differential equations (Supplemental Material, section 1.8), which were
solved in MATLAB R2015b (MathWorks, Inc., Natick, MA). Model
simulations for 1000 “virtual individuals” were performed, taking into
account population variability in both the system- and drug-related
parameters of the model. All model parameters along with the exact
methodology for the generation of the respective population distributions
are described in the Supplemental Material (sections 1.9 and 1.10 for
system- and drug-related parameters, respectively). This approach
allowed the generation of 95% population prediction intervals associated
with lidocaine concentration-time profiles in arterial plasma after a
constant-rate i.v. infusion of lidocaine HCl, 3 mg/kg, over a 3-minute
period. Model predictions were then compared with clinically observed
arterial concentration-time profiles (Tucker and Boas, 1971) obtained
under the same dosage regimen.

Results
Variability in Cell Culture Phenotype. Human serum

albumin production, urea production, and LDH release to
extracellular medium in the liver MPS were quantified to
assess baseline cell health and phenotypic variability among
the donors and wells prior to drug exposure (predose, day 4).
Substantial and statistically significant differences in albu-
min production, urea production, and LDH release were
observed across hepatocyte cultures from the five different
donors (Fig. 1). These phenotypic metrics were also merged
across the five different donors and compared with the
equivalent metrics from the pooled hepatocytes. Although
no difference was observed in albumin production, the pooled
hepatocytes were associated with higher urea production and
higher LDH levels (Fig. 1).

Assessment of Variability in Drug Metabolism with Liver MPS 97

 at A
SPE

T
 Journals on A

pril 19, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/lookup/suppl/doi:10.1124/jpet.116.237495/-/DC1
http://jpet.aspetjournals.org/lookup/suppl/doi:10.1124/jpet.116.237495/-/DC1
http://jpet.aspetjournals.org/lookup/suppl/doi:10.1124/jpet.116.237495/-/DC1
http://jpet.aspetjournals.org/lookup/suppl/doi:10.1124/jpet.116.237495/-/DC1
http://jpet.aspetjournals.org/lookup/suppl/doi:10.1124/jpet.116.237495/-/DC1
http://jpet.aspetjournals.org/lookup/suppl/doi:10.1124/jpet.116.237495/-/DC1
http://jpet.aspetjournals.org/lookup/suppl/doi:10.1124/jpet.116.237495/-/DC1
http://jpet.aspetjournals.org/lookup/suppl/doi:10.1124/jpet.116.237495/-/DC1
http://jpet.aspetjournals.org/lookup/suppl/doi:10.1124/jpet.116.237495/-/DC1
http://jpet.aspetjournals.org/lookup/suppl/doi:10.1124/jpet.116.237495/-/DC1
http://jpet.aspetjournals.org/lookup/suppl/doi:10.1124/jpet.116.237495/-/DC1
http://jpet.aspetjournals.org/lookup/suppl/doi:10.1124/jpet.116.237495/-/DC1
http://jpet.aspetjournals.org/


The same phenotypic metrics were also measured at the end
of the drug-metabolism study (postdose, days 5–7). Hepatocyte
cultures were clearly functional throughout the study, as
demonstrated by continued albumin and urea production.More
specifically, across all treatments, postdose albumin production
was significantly increased and LDH release was significantly
decreased compared with the equivalent predose levels (Fig. 2).
Urea production also exhibited an overall trend of increase at
postdosemeasurements for all treatments, except prednisolone.
Further analysis supported that the aforementioned differ-
ences are likely due to the increased period in culture rather
than due to a treatment (compound) effect, as the postdose
metrics were not significantly different between treatments
(see SupplementalMaterial, section 2.1). The stratification of
these postdose phenotypic metrics, not only across treat-
ments but also across different donors (Supplemental Figs.
S2–S4), indicates continued significant interdonor variabil-
ity during the drug-metabolism study. Last, a correlationmatrix
plot of all pre- and postdose phenotypic metrics measured across
all different donors (or pool of donors) and wells illustrated that
strong pairwise correlations may occur across these metrics
(Supplemental Fig. S5).
The three-dimensional microtissue structures were visual-

ized at the end of the experiment. The results show that the

tissue formation was consistent/comparable across the dif-
ferent donors and was maintained throughout the culture
period (Supplemental Fig. S6). All of the results regarding
the quantitative/statistical analysis of the phenotypic met-
rics are described in the Supplemental Material (section 2.1).
Gene Expression. A comparison of gene expression (drug-

metabolism related) signature between freshly thawed hepa-
tocytes and the liver MPS showed a statistically significant
difference for only 10 of the 90 investigated genes (four down-
regulated and six upregulated in the liver MPS; see Fig. 3).
Thus, for the vast majority of the investigated metabolism-
related genes, hepatocyte microtissues retain gene expression
(6 days after seeding) at levels comparable to those in freshly
thawed hepatocytes. The list of all genes investigated in this
work, theaverage fold-changes in expression, and theassociated
statistical significance are reported in Supplemental Table S2.
To visualize the changes in gene expression signature sepa-
rately at the level of each donor (or pool of donors) and iden-
tify clusters of genes that are jointly up- or downregulated,
agglomerative hierarchical clustering was performed (Supple-
mental Fig. S7). A number of genes were consistently down- or
upregulated in the liver MPS compared with freshly thawed
hepatocytes for all different donors; however, there were also
genes that were diversely regulated across donors [some genes

Fig. 1. Predose (measured at day 4) albumin, urea, and LDH
levels stratified across different donors. Hu1601, Hu1604,
Hu1624, Hu8150, and Hu8181 are lot numbers corresponding
to five different donors. “Pooled” refers to the pool of hepatocytes
from the five donors, and “All donors” refers to the data from all
five donors merged together. Red lines correspond to the mean of
the data, purple boxes extend the mean by 6 1 S.D., and pink
boxes correspond to 95% confidence intervals around the mean.
LDH levels are expressed in optical density (OD) units at 490 nm.
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(e.g., CYP3A5) were strongly upregulated in donor Hu8181 but
downregulated in all other donors]. This further highlights the
presence of interdonor variability.
Additionally, it was observed (Supplemental Fig. S8) that

for the vast majority of genes, the magnitude of interdonor
variability inmRNA expression levels was significantly larger
in freshly thawed hepatocytes [average coefficient of variation
(CV) across all genes was 72%] compared with the liver MPS
(average CV across all genes was 34%).
Finally, of the 90 investigated genes, only five in the liverMPS

and none in the freshly thawed hepatocytes were signifi-
cantly differentially expressed in the pooled hepatocyte samples
compared with the average values observed across the different
donors (Supplemental Fig. S9). Thus, overall, there was no
evidence against the argument that the mRNA expression
levels obtained from the pooled hepatocytes can be considered
as representative of the average mRNA expression obtained
across the different donors. However, for the majority of genes
in the liver MPS, there was a nonsignificant trend that the
pooled hepatocytesmarginally overpredict the averagemRNA

expression obtained across the different donors, whereas for
the majority of genes in the freshly thawed hepatocytes, the
opposite nonsignificant trend was observed (Supplemental
Fig. S9).
Drug Binding to the Hepatocyte-Free LiverChip and

Tissue Culture Medium. Nonspecific drug binding to the
hepatocyte-free LiverChip platforms was evaluated for the
drugs used in metabolism studies. The quantification of each
drug showed no evidence of nonspecific drug binding to
LiverChip components after 48-hour exposure (Supplemental
Fig. S10). Therefore, nonspecific binding of the investigated
compounds to the LiverChip materials was treated as negli-
gible in the current work.
The rapid equilibrium dialysis analysis indicated that the

extent of binding to cell culture media components (e.g.,
bovine serum albumin) varies substantially across the
investigated compounds. The unbound fraction in media
for diclofenac, ibuprofen, lidocaine, prednisolone, propran-
olol, and phenacetin was determined to be 0.13 (35%CV), 0.31
(10% CV), 0.88 (9% CV), 0.94 (4% CV), 0.98 (2% CV), and 0.98

Fig. 2. Comparison between the predose (measured at day 4) and the postdose (measured at day 6 for diclofenac, propranolol, lidocaine, and ibuprofen
and days 5 and 7 for phenacetin and prednisolone, respectively) albumin, urea, and LDH levels stratified across different treatments. Data from both the
five donors and the pooled hepatocytes are shown. Red lines correspond to the mean of the data, purple boxes extend the mean by 6 1 S.D., and pink
boxes correspond to 95% confidence intervals around the mean. Thin black lines connect the pre- and postdose levels in a given donor (or pool of donors)
and well. Asterisks inside each subplot indicate significant differences between pre- and postdose levels (*P , 0.05, **P , 0.01, ***P , 0.001). LDH
levels are expressed in optical density (OD) units at 490 nm.
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(1% CV), respectively (CV refers to coefficient of variation
across triplicate experiments).
Pharmacokinetic Analysis of the Drug Depletion

Data. All drug depletion data across different donors and
wells available to the pharmacokinetic analysis are presented
in Fig. 4 (see also Supplemental Material, section 2.2 for a
numerical summary and Supplemental Fig. S11 for averaged
concentration-time profiles for each donor across different
wells). Substantial interdonor and interwell variability was
observed in the metabolic depletion profiles of all compounds.
The results of the mixed-effects modeling of the individual-

donor drug depletion data are presented in Table 1. The
estimates of the typical intrinsic clearance [CLintðuÞ] for the
six investigated compounds ranged from 0.81ml/min/106 cells
for prednisolone to 17.8 ml/min/106 cells for diclofenac. These
parameters were precisely estimated for all compounds with
relatively low standard errors. The intrinsic clearance of all
compounds was associated with substantial interdonor var-
iability, and the respective CV% ranged from 24.1% for
phenacetin to 66.8% for propranolol. Interwell variability
(within donor) in intrinsic clearance was less pronounced
than interdonor variability for all compounds except phena-
cetin (marginally higher IWV compared with IDV). The
coefficient of variation with respect to the interwell variabil-
ity in intrinsic clearance ranged from 6% for diclofenac to
32.9% for propranolol. The residual (unexplained) variability
of the model regarding the observed concentrations was
relatively small for all compounds, ranging from 8.4% CV
for lidocaine to 21.6% CV for propranolol.
The developed mixed-effects models adequately reflect not

only the average trend in the data but also the observed
variability (Fig. 5). Additionally, the ability of this modeling

approach to accurately describe the data not only in total but
also at the level of each individual donor andwell is illustrated
in Supplemental Fig. S12 in the case of propranolol (the
compound with the highest degree of interdonor and interwell
variability). The one-compartment pharmacokinetic model
that was assumed for drug depletion provided an adequate
description of the data, as the majority of the compounds
exhibited monoexponential declines in their concentration-
time profiles, with the exception of diclofenac, for which a
model of biexponential decline might be more appropriate
(Figs. 4 and 5). However, an additional analysis (Supplemen-
tal Material, section 2.3) supported that the monoexponential
decline assumption for diclofenac does not introduce any
substantial bias for the purpose of this work.
The results regarding the analysis of the pooled hepatocyte

drug depletion data are also presented in Table 1, and the
adequacy of the model to describe the observed data is
illustrated in Supplemental Fig. S13. Estimates of the typical
intrinsic clearance [CLintðuÞ] for the six investigated com-
pounds in pooled hepatocytes ranged from 0.91 ml/min/106

cells for prednisolone to 18.6 ml/min/106 cells for diclofenac. A
comparison with the equivalent clearance estimates deter-
mined from the individual-donor data indicates only minor
differences (Table 1) and supports the notion that pooled
hepatocytes can provide a relatively unbiased estimate of the
average clearance in the donor population. More specifically,
the ratio of CLintðuÞ determined in the individual donor data to
the CLintðuÞ determined in the pooled hepatocyte data ranged
from 0.61 for propranolol to 1.42 for ibuprofen, with an average
of 0.97 across all compounds (see Table 1). In addition, the 95%
confidence intervals associated with this ratio included 1 for all
compounds with the sole exception of propranolol, which is
consequently the only compound exhibiting marginal evidence
of bias in the determination of clearance in the donor population
by using pooled hepatocytes.
Metabolite Formation. Metabolite concentration-time

profiles were determined for prednisolone, phenacetin, ibupro-
fen, and diclofenac (Supplemental Fig. S14). A strong correla-
tion was observed between the intrinsic clearance for drug
depletion in a given donor/well and the respective metabolite
formation levels (Supplemental Fig. S15). More specifically, the
linear regression R2 values were very high for three of these
compounds (0.91, 0.82, and 0.77 for prednisolone, ibuprofen, and
diclofenac, respectively), whereas the correlationwasweaker for
phenacetin (R2 squared 5 0.4). These results indicate that the
clear interdonor differences observed in drug depletion clear-
ance are also reflected in the metabolite formation levels.
Identification of In Vitro Intrinsic Clearance Predictors.

Predose albumin and urea production levels in a given donor/
well were positively correlated with the respective intrinsic
clearance values that were subsequently obtained from the
drug-metabolism study (Supplemental Fig. S16). On the other
hand, these intrinsic clearance values were negatively corre-
latedwith the predoseLDHrelease levels, whereasP450mRNA
levels had only a marginal positive correlation (Supplemental
Fig. S16). A Lasso regressionmodel, in which several covariates
are considered simultaneously, identified all of the previously
discussedmetrics (albumin, urea, LDH, andP450mRNA levels)
as significant predictors of in vitro intrinsic clearance (Supple-
mental Table S3 and Fig. S17). Although this model was able to
account for a substantial part of the observed variability in
intrinsic clearance values (R2 5 0.52), there is still unexplained

Fig. 3. Volcano plot that illustrates the average fold-change in gene
expression between the liver MPS (day 6) and freshly thawed hepatocytes
along with the associated statistical significance. The log2 of the fold-
change is plotted on the x-axis; thus, positive values indicate upregulation
in the liver MPS compared with the freshly thawed hepatocytes, whereas
negative values indicate downregulation. Genes outside the two black
vertical lines are up- or downregulated more than 3-fold. On the y-axis, the
–log10 of the P value is plotted; thus, the higher values indicate stronger
statistical evidence of a significant difference in gene expression between
the liver MPS and freshly thawed hepatocytes. The genes for which
significant differences were detected after multiple testing correction are
highlighted in red, and the respective gene names are reported.
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variability that cannot be captured solely by these four predic-
tors (Supplemental Material, Fig. S18).
Prediction of In Vivo Hepatic Clearance. The results

regarding the agreement between the observed hepatic
clearances in vivo and the predicted hepatic clearances from
the in vitro data are graphically illustrated and numerically
summarized in Supplemental Fig. S19 and Table S4, re-
spectively. Predicted clearance values from the liver MPS
study were strongly correlated with the observed in vivo

values [linear regression R2 values of 0.75 and 0.77, re-
spectively, when the parallel tube (PT) or the well stirred
(WS) liver model was used]. The average fold-error across all
compounds (underprediction) was 4.2-fold and 4.5-fold when
the PT or the WS liver model was used, respectively. The
lowest degree of underprediction was observed for phenac-
etin (1.7-fold and 2.1-fold for the PT and WS models, respec-
tively), and the highest, for propranolol (8.2-fold and 8.5-fold
for the PT and WS models, respectively). By calculating the

TABLE 1
Parameter estimates from the modeling of the drug depletion data

Parameter Propranolol Prednisolone Phenacetin Lidocaine Ibuprofen Diclofenac

Individual-donor data
CLint(u)

a 3.88 (28.6%) 0.81 (14.7%) 8.91 (12.7%) 4.38 (12.9%) 5.02 (16.2%) 17.80 (16.8%)
IDVb 66.8% (40.9%) 29.3% (58.1%) 24.1% (80.4%) 28.5% (38.1%) 32.6% (44.9%) 36.2% (71.5%)
IWVb 32.9% (62.7%) 21.5% (70.0%) 26.1% (65.2%) 11.3% (26.5%) 30.7% (55.8%) 6.0% (120.9%)
RVb 21.6% (56.6%) 10.3% (25.8%) 14.2% (69.8%) 8.4% (34.0%) 9.6% (29.3%) 20.0% (26.2%)

Pooled hepatocytes data
CLint(u)

a 6.34 (5.9%) 0.91 (4.0%) 9.67 (17.4%) 4.24 (3.6%) 3.54 (33.3%) 18.60 (14.4%)
IWVb 9.6% (50.4%) –c 30.7% (41.5%) 5.9% (43.7%) 62.5% (40.0%) 23.6% (54.4%)
RVb 19.7% (41.1%) 11.4% (32.0%) 9.5% (40.4%) 6.9% (14.4%) 7.5% (15.8%) 16.3% (28.6%)

Individual-donor/pooled
hepatocytes
CLint(u) ratio

d 0.61 (0.27, 0.97) 0.89 (0.63, 1.16) 0.92 (0.61, 1.47) 1.03 (0.77, 1.31) 1.42 (0.75, 4.20) 0.96 (0.60, 1.48)

aThe typical unbound intrinsic clearance [CLint(u)] for each drug is reported in ml/min/106 cells.
bInterdonor variability in unbound intrinsic clearance (IDV), interwell variability in unbound intrinsic clearance (IWV), and the residual variability in the observed data

(RV) are reported in terms of CV%, which was calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðevariance 21Þ

p
×100, where “variance” is the estimate of v2, p2, and s2 for IDV, IWV, and RV, respectively (see

Materials and Methods). Values in parentheses correspond to relative standard errors calculated as ðstandard  error=estimateÞ×100.
cInterwell variability could not be estimated and was fixed to 0.
dRatio of CLint(u) determined in the individual donor data to the CLint(u) determined in the pooled hepatocytes data. Values in parentheses correspond to 95% confidence

intervals of this ratio, calculated using Fieller’s theorem and assuming normality of the CLint(u) estimators. The average CLint(u) ratio across all compounds is 0.97.

Fig. 4. Drug depletion data available for the pharmacokinetic analysis. Hu1601, Hu1604, Hu1624, Hu8150, and Hu8181 are lot numbers corresponding
to five different donors. “Pool” refers to the pool of hepatocytes from the five donors. The small numbers on the right of each concentration point (values of
1, 2, or 3) aim to distinguish different wells across the same donor (or pool of donors).
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deviations between observations and predictions at the level of
intrinsic clearances (see SupplementalMaterial, section 1.6), an
empirical scaling factor of 5.4 or 8.7 was derived when the PT or
the WS liver model was considered, respectively.
Population In Vitro–In Vivo Translation with the Aid

of PBPK Modeling. The success of the population PBPK
modeling approach used for in vitro–in vivo translation at the
“population level” is illustrated in Fig. 6. The model predic-
tions were in close agreement with the clinically observed
data (Tucker and Boas, 1971), adequately capturing not only
the average trend in the observed clinical data but also the
extent of the associated interindividual variability. Minor
disagreements betweenmodel predictions and observations are
considered acceptable, as the model mainly utilizes in vitro/in
silico information, and the observed concentration-time
data have not been used to fit (estimate) any of the model
parameters.

Discussion
Microphysiological systems have not been fully evaluated for

quantitative pharmacology applications, such as prediction of
hepatic drugmetabolism. The currentwork focuses on the in vitro
assessment of population variability in drug metabolism using a
liver MPS and the subsequent translation to variability in
pharmacokinetics in vivo using computational modeling and
simulation methodologies. The overall framework used in this
work (see schematic in visual abstract) represents our recommen-
dation with regard to the analysis and the subsequent in vivo
translation of in vitro data generated in microphysiological
systems.
The generated output in such systems (e.g., drug depletion

profiles) is a complex function of the characteristics of the in vitro
system (e.g., number of cells, medium volume, and composition)
and intrinsic biologic parameters (e.g., unbound intrinsic clear-
ance for a given drug). Through model-based analysis of the
in vitro output, we estimated the intrinsic biologic parameter
(unbound intrinsic clearance) disentangled to the greatest
possible degree from the in vitro system characteristics and

any additional processes taking place in the platform (e.g.,
drug binding to medium components).
To estimatepopulation variability associatedwith the intrinsic

biologic parameter, the study was designed to capture drug
depletion data acrossmultiple donors andmultiple wells for each
donor. The statistical analysis of such multilevel longitudinal
data is challenging and can be approached with different
methods. However, themost suitable and unbiasedmethod is
through nonlinear mixed-effects modeling (Sheiner and Beal,
1981; 1983; Mould and Upton, 2013), as this simultaneously
takes into account the different sources and levels of variability.
It was demonstrated here that the in vitro–determined meta-
bolic drug clearance varied substantially across hepatocytes
from different donors. This highlights that clearance predictions
for new compounds should be evaluated carefully when hepato-
cytes froma single donor only are used. Itwas also demonstrated
that interwell variability in intrinsic clearance was generally
lower than the associated interdonor variability, providing
further confidence in microphysiological systems for future
investigations of population variability in drug metabolism.
The unbound intrinsic clearance along with the associated

interdonor variability obtained from the liver MPS can be
scaled up and integrated with the characteristics of the
in vivo system (hepatic blood flow, organ volumes, etc.) and
their respective population variability through the use of
PBPK modeling and the performance of stochastic simula-
tions (Jones and Rowland-Yeo, 2013; Tsamandouras et al.,
2015b,c). The lidocaine case study illustrated the details of
this approach, and to our knowledge, this work is the first to
combine experimental liver MPS data with a computational
systems pharmacology framework to perform in vivo phar-
macokinetic predictions. The accurate prediction of the
clinically observed population variability in lidocaine plasma
concentration-time profiles provides further confidence in
the value of this combined experimental and computational
approach.
Interdonor variability was also investigated in the liver MPS

with respect to additional phenotypic levels. Specifically, se-
creted and released biomolecules (albumin, urea, LDH) further

Fig. 5. Visual predictive checks of the
developed mixed-effect models with regard
to the observed individual-donor drug de-
pletion data. Closed gray circles represent
the observed concentrations in medium;
highlighted with purple are the areas
between the 5th and 95th percentiles of
model simulations that take into account
the different levels of variability (90%
prediction intervals), whereas the red solid
line represents their median (median pre-
diction); the horizontal dashed black line
represents the limit of quantification.
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highlighted the donor variability in terms of culture functional-
ity and viability. Interestingly, we observed a clear correlation
between the levels of these biomolecular markers before drug
administration and the subsequently determined drug clear-
ance in the respective donors/wells. Although accurate cell
number quantification in MPS technologies is a challenge, it is
essential for quantitative pharmacology studies. In the current
study, visual inspection of phase-contrast images indicated
that seeding across different wells was consistent and equally
successful across hepatocytes from different donors. In compar-
ison, the extent of the interdonor/interwell differences observed
in this work in drug clearance and other biomolecular metrics
(albumin, urea, LDH) is muchmore pronounced, indicating that
the aforementioned differences and correlations mainly arise
through the MPS biology and are not simply a reflection of
differences in attached cell numbers on the scaffolds.
ThemRNAexpression ofmetabolism-related genes exhibited

substantial diversity across different donors. Interestingly,
interdonor variability in mRNA expression levels was signifi-
cantly lower in liver MPS cultured hepatocytes (6 days after
seeding) compared with freshly thawed hepatocytes. We hy-
pothesize that this is due to adaptation to the much more

controlled and consistent environment of stimuli/cues (me-
dium composition, flow, oxygen gradient, etc.) present in the
liver MPS culture. Finally, although P450 mRNA level was
identified in conjunction with other phenotypic metrics
(albumin, urea, LDH) to be a predictor of intrinsic metabolic
clearance, it accounted for only a very small portion of the
clearance variability. Thus, screening mRNA expression of
metabolic enzymes across different donors should not be used
as a surrogate marker for interdonor variability in metabolic
activity.
The retention of hepatocyte viability and functionality in

the liver MPS for the entire period of the study (up to 7 days)
was also clearly demonstrated. Specifically, at the end of the
drug-metabolism study, not only were albumin and urea
produced in high levels and LDH secretion was low, but
these metrics were also substantially improved compared
with predose (day 4) determinations. The decrease in LDH
release after a few days in culture is something routinely
observed in the investigated liver MPS and is due to the
adaptation of the cells in the tissue culture microenviron-
ment. Additionally, the retention of gene expression in the
liver MPS was illustrated across an array of 90 different

Fig. 6. Population PBPKmodel prediction of lidocaine arterial plasma concentrations during and after a constant-rate i.v. infusion (lidocaine HCl, 3 mg/kg
for 3 minutes). The clinically observed data represented with closed gray circles were extracted from Tucker and Boas (1971) across five different subjects.
The shaded area corresponds to the 95% population prediction intervals of the model, and the red line corresponds to the median model prediction. The
insert plot magnifies the first 16 minutes for the purpose of clarity.
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genes, including several phase I (e.g., P450s) and phase II
(e.g., glutathione S-transferases) drug-metabolizing enzymes,
together with a few important hepatic regulators (e.g., HNF4a)
and transporters (e.g., MRP2, BSEP, NTCP. On top of that,
additional confidence on the sustained functionality of the system
stems from the time-dependent accumulation of drug metabolite
levels across several donors/wells, whereas these levels were also
highly correlated to the respective intrinsic clearance for the
depletion of the parent drug.
In vitro drug-metabolism experiments using hepatocytes that

are pooled across different donors (Shibata et al., 2002) have been
a common practice to avoid bias arising from interdonor differ-
ences. However, the validity of such a practice has not previously
been evaluated in MPS technologies. For the vast majority of
90 genes studied, the mRNA expression levels obtained from the
pooled hepatocytes were not significantly different from the
average mRNA expression levels obtained across the different
donors. More importantly, by performing drug depletion studies
in the liverMPS in both pooled hepatocytes and individual-donor
hepatocytes, it was found that pooled hepatocytes can provide a
relatively unbiased estimate of the average metabolic clearance
in the donorpopulation. Thus, utilization of pooledhepatocytes to
study drug metabolism in the liver MPS is a reliable option as
long as the determination of the associated interindividual
variability is not of interest.
This study focused intensively on the investigation of

interdonor variability and thus included only a small set of
compounds (n 5 6). For this particular set of compounds, using
state-of-the-art in vitro–in vivo extrapolation methodologies, we
obtained a robust correlation between clinically observed and
predicted clearances; however, in absolute values, the predicted
clearances were lower than those observed in vivo (average fold-
error was 4.2 across all evaluated compounds). This trend of
underprediction is similar to that previously observedwith other
traditionally used in vitro systems (Hallifax et al., 2010), and
its origins remain a subject of ongoing research in the drug-
metabolism field (Galetin, 2014; Bowman and Benet, 2016).
Future studies with a wide and diverse set of compounds are
needed to clearly evaluate liverMPS technologieswith respect to
their clearance prediction capabilities and develop robust em-
pirical relationships that can be used to correct for any under-
prediction of the in vivo values. Finally, further work is needed
on the development of mechanistic model-based methodologies
to determine in vitro intrinsic clearance that are particularly
focused on liver MPS technologies and their features.
In contrast to the in vitro systems traditionally used to study

drug metabolism, liver MPS technologies can be integrated
along with MPS of other organ systems, allowing the develop-
ment of platforms where several organ modules are interacting
(Stokes et al., 2015; Yu et al., 2015). The development of such
physiome-on-a-chip (or human-on-a-chip) platforms is a novel
and exciting research field that holds promise for significant
applications in drug development (e.g., screening compounds for
efficacy/toxicity) and personalizedmedicine (e.g., in vitro clinical
trials) (Fabre et al., 2014). Since the liverMPS has a central role
in these platforms, the current work provides further confidence
with respect to their use in pharmacokinetic/pharmacodynamic
investigations.
In summary, this is the first study that specifically focuses

on the in vitro assessment of interindividual variability in
drug metabolism in the context of a microphysiological
system. It was clearly illustrated that interdonor differences

are substantial and are manifested in multiple levels (in-
trinsic metabolic clearance, formation of liver-specific mole-
cules, gene expression). Moreover, this work supports the use
of modeling and simulation as an indispensable tool to analyze
and translate the in vitro results emerging from such micro-
physiological systems to the in vivo context. Finally, the current
work provides further confidence regarding the use of liver MPS
technologies as an alternative for drug metabolism–related
investigations.
Visual abstract. Schematic overview of the framework pro-

posed in this work with regard to the analysis and the sub-
sequent in vivo translation (at the population level) of the in vitro
liver MPS data. See Discussion for detailed explanation.
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1. Supplementary Methods 

�

1.1. Chemicals and reagents 

HPLC grade methanol, acetonitrile, isopropanol, dimethyl sulfoxide (DMSO) and formic 

acid were purchased from Fisher Scientific (Loughborough, UK). Chloroform and 

ammonium acetate were purchased from Sigma, (Gillingham, UK). Water for HPLC was 

purified on a Milli Q system (Millipore, Watford, UK). Rapid Equilibrium Dialysis 

(RED) devices were purchased from Fisher Scientific (Loughborough, UK). Chemicals 

used for the drug metabolism studies and standard curves were purchased from the 

suppliers specified in Table S5. All test compound stock solutions were prepared in 

DMSO. 

1.2. RNA isolation and gene expression analysis 

Total RNA was extracted from freshly thawed hepatocytes or from LiverChip scaffolds 

cultured for 6 days (run in parallel to the drug metabolism study without the addition of 

any drug), using TRIzol® Reagent (Ambion) and a chloroform phase separation. RNA 

was precipitated from aqueous phase samples using 100% isopropranolol and RNA 

pellets were re-suspended in dH2O. RNA was subsequently treated with TURBO DNA-

free™ Kit (Ambion) to remove genomic DNA, before cDNA was synthesized from each 

sample using the High-Capacity RNA-to-cDNA™ Kit (Applied Biosystems, Foster City, 

CA). QPCR was performed using SYBR® Green PCR Master Mix and primers designed 

against transcripts related to hepatic genes of specific interest (CYP1A2, CYP7A1, 

BSEP, MRP2, NTCP and HNF4a, see also Table S1). Samples were analyzed using a 
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Quantstudio 6 real time PCR system (Applied Biosystems, UK). Ct values from samples 

were compared and normalized to GAPDH expression. Additionally, a super-array (see 

below) analysis was performed in order to investigate the expression of 84 metabolism-

related genes. For this super-array analysis, reverse transcription and PCR were 

performed using RT2 First Strand Kit and RT2 Profiler PCR Arrays (Qiagen, UK). Human 

Drug Metabolism (PAHS-002ZC-12) RT² Profiler™ PCR Array was used to analyze 

each sample. Ct values from samples were compared and normalized to the average 

expression across five different housekeeping genes (ACTB, B2M, GAPDH, HPRT1 and 

RPLP0). The super-array and QPCR data (referring to 84 and 6 genes respectively) were 

merged to generate a dataset of 90 genes the expression of which was investigated. A 

complete list of all these genes is provided in Table S2. 

The analysis of gene expression data was focused on addressing three research questions. 

The first was to assess the expression of metabolism-related genes in hepatocytes 

cultured in the liver MPS for 6 days in comparison to that in freshly thawed hepatocytes. 

For each of the 90 genes for which mRNA levels where available, we calculated the 

associated average fold-change by averaging (geometric mean) across all the different 

donors and pool of donors the ratio of relative mRNA expression in the liver MPS 

compared to freshly thawed hepatocytes. Thus, an average fold-change value higher than 

1 for a specific gene indicates up-regulation in the liver MPS compared to the freshly 

thawed hepatocytes while a value lower than 1 indicates down-regulation. Also, to assess 

the statistical significance of the observed fold-change in gene expression, a paired t-test 

was performed for each of the 90 genes, comparing the mRNA levels obtained across the 

different donors and pool of donors in the liver MPS to the respective levels obtained in 
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freshly thawed hepatocytes. Multiple testing was taken into account by controling the 

false discovery rate at the 0.05 level with the Benjamini-Hochberg procedure (Benjamini 

and Hochberg, 1995).  

The second question was to assess the magnitude of inter-donor variability in mRNA 

expression levels and specifically investigate whether this variability is higher or lower in 

the liver MPS compared to freshly thawed hepatocytes. Therefore, the coefficient of 

variation (CV%) associated with the mRNA expression levels  across the five hepatocyte 

donors was calculated for both the liver MPS and freshly thawed hepatocytes.  

Finally, the third question was to assess whether the mRNA expression levels obtained 

from pooled hepatocytes is representative of the average mRNA expression across the 

different donors. For each of the 90 genes for which mRNA levels were available and for 

both the liver MPS and the freshly thawed hepatocytes separately, we calculated an 

average fold-difference metric by averaging across all the different donors, the ratio of 

mRNA expression in a specific donor compared to the respective expression in the 

pooled hepatocytes. Thus, an average fold-difference metric value higher than 1 for a 

specific gene indicates that pooled hepatocytes under-predict the average mRNA 

expression obtained across the different donors for this gene, while a value lower than 1 

indicates over-prediction. In addition, a one sample t-test was performed for each gene, 

testing the null hypothesis that the mRNA expression levels across the different donors 

come from a distribution with mean equal to the expression levels determined in the 

pooled hepatocytes for this specific gene. Multiple testing was taken into account by 

controling the false discovery rate at the 0.05 level with the Benjamini-Hochberg 

procedure (Benjamini and Hochberg, 1995).  
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1.3. Sample preparation and LC-MS/MS analysis 

60 μL supernatant samples (i.e. corresponding to the extracellular compartment) were 

taken at pre-determined sampling times and added to 40 μl water, 150 μl methanol and 

150 μl methanol containing 1 μM Tolbutamide as internal standard (IS). Standard curves 

ranging from 1.5 nM - 12,000 nM were prepared for all the compounds in the same 

matrixes as the media samples. All analytical samples were vortex mixed and kept at -

20°C for a minimum of 2 hours to allow complete protein precipitation. Samples were 

centrifuged at 2,500 x g, 4°C for 20 minutes and supernatants were transferred to fresh 

polypropylene microtiter plates (Greiner, Stonehouse, UK), sealed with pre-slit silicone 

cap mats (Chromatography Direct, Runcorn, UK) and analyzed by liquid chromatography 

tandem mass spectrometry (LC-MS/MS). The individual multiple reaction monitoring 

(MRM) methods are summarized in Table S5. The instruments used and the LC-MS/MS 

parameters are summarized in Table S6. Mass spectrometry was performed by an 

independent contract research organization (Xenogesis Ltd, Nottingham, UK). 

1.4. Rapid equilibrium dialysis to investigate drug binding to tissue culture 

media 

Binding to tissue media components (e.g. BSA) was assessed by rapid equilibrium 

dialysis (RED). 100 μM compound stock solutions were prepared in DMSO and 

subsequently diluted 100-fold in WEM maintenance culture media. This solution was 

transferred to the sample side of a RED plate (Fisher Scientific, Loughborough, UK) and 

PBS was added to the buffer side. RED plates were sealed and incubated at 37°C for 4 

hours with orbital shaking at 100 rpm. Remaining culture medium was mixed 1:1 with 
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PBS and quenched with methanol/IS. This served as the t=0 sample for recovery 

determinations.  At the end of the incubation, samples from the medium side were mixed 

1:1 with PBS and from the PBS side were mixed with 50 μl blank culture media and all 

samples were quenched with methanol/IS. Compound DMSO stock solutions were 

diluted in methanol/IS and serially diluted to cover a standard concentration range 0.16 

nM - 1000 nM. Each methanolic working solution was spiked into a 1:1 mix of blank 

media and PBS and quenched with methanol/IS. All standards and samples were mixed, 

and kept at -20°C for a minimum of 2 hours to allow complete protein precipitation. 

Samples were centrifuged at 2,500 x g, 4°C for 20 minutes and supernatants were 

transferred to polypropylene microtiter plates for analysis by LC-MS/MS. The individual 

MRM methods are summarized in Table S7 and the instruments used and the LC-MS/MS 

parameters are summarized in Table S6. 

1.5. Identification of in vitro clearance predictors 

It was of particular interest in this study to identify variables that can be used as 

predictors of in vitro clearance. Therefore, the values (empirical Bayes estimates) of 

intrinsic clearance obtained across different donors/wells ( ) from the modeling of 

the individual-donor data were investigated in relation to the values of the respective 

available pre-dose phenotypic metrics (e.g. albumin production). It was desirable to 

preform such an investigation not independently/separately for each compound but 

simultaneously across all the studied compounds in order to detect common/universal 

predictors. Therefore, for each compound, the intrinsic clearance across the different 

CLij
int(u)
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donors/wells ( ) was normalized by the typical (median) value of intrinsic 

clearance ( ) for this specific compound (see Eq.1).  

  ����������������(Eq.1) 

Consequently, the normalized intrinsic clearance will be less than one for donors/wells 

that we observed a clearance smaller than the typical for this compound clearance and 

higher than 1 in the opposite case. The normalized intrinsic clearance values across all 

compounds were subsequently regressed against the following four variables: 1) pre-dose 

albumin production in the respective donors/wells; 2) pre-dose urea production in the 

respective donors/wells; 3) pre-dose LDH release levels in the respective donors/wells; 

and 4) donor-specific CYP mRNA levels determined in the liver MPS wells that were 

sacrificed at day 6 for RNA analysis (see above). For each compound the mRNA levels 

of the primarily responsible for its metabolism CYP were used (CYP2D6 for propranolol 

(Masubuchi et al., 1994); CYP3A4 for predinisolone (Zhang et al., 2009); CYP1A2 for 

phenacetin (Venkatakrishnan et al., 1998) and lidocaine (Wang et al., 2000); and 

CYP2C9 for ibuprofen (Davies, 1998) and diclofenac (Bort et al., 1999)). Similarly to the 

normalization applied in intrinsic clearance values, the mRNA levels of each of the above 

CYPs were normalized by the average mRNA levels for this specific CYP across all 

donors. Thus, the normalized CYP mRNA expression (being less than one for donors 

with mRNA levels lower than the donor average and higher than 1 in the opposite case) 

was used as predictor in the regression. The Lasso, a regularized least-squares regression 

method (Tibshirani, 1996), was employed as it was desirable to avoid overfitting / 

improve prediction accuracy while simultaneously selecting only the subset of predictors 

CLij
int(u)

CLint(u )

normalized  CLint(u )
ij =

CLint(u )
ij

CLint(u )
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which are important to the dependent variable (in vitro intrinsic clearance) by filtering 

out any less relevant/redundant predictors. The Lasso regression was performed in 

Matlab R2015b (The MathWorks, Inc., Natick, Massachusetts, USA) using the lasso 

function of the statistics and machine learning toolbox. Optimal tuning of the 

regularization parameter lambda (λ), and thus model (covariate) selection, was performed 

by 5-fold cross validation (Hastie et al., 2009) and identification of the λ value that 

minimizes the cross-validated mean square error. 

1.6. Prediction of in vivo hepatic clearance  

The typical value of unbound intrinsic clearance ( ) determined for each drug from 

the pharmacokinetic analysis of the individual-donor in vitro data, was subsequently 

scaled up to a human liver equivalent unbound intrinsic clearance ( ) using Eq.2, �

� �������������(Eq.2)�

, where HC is the human hepatocellularity of 120 million cells / g of liver (Hakooz et al., 

2006) and LW is the average human liver weight of 25.7g / kg of body weight (Brown et 

al., 1997). The hepatic clearance (referring to whole blood concentrations) was then 

predicted ( ) using either the Well-Stirred (WS) (Eq.3) or the Parallel Tube (PT) 

(Eq.4) liver model (Pang and Rowland, 1977).   

� �������������������������(Eq.3) 

� ���������������  (Eq.4)�

CLint(u)

CLint(u ),H

CLint(u ),H = CLint(u ) ⋅HC ⋅LW

CLH ( pred )

CLH ( pred ) =
QH ⋅ fub ⋅CLint(u ),H

QH + fub ⋅CLint(u ),H

CLH ( pred ) = QH ⋅ 1− e− fub ⋅CLint(u ),H /QH( )
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, where is the average hepatic blood flow of 20.7 mL/min/kg of body weight (Davies 

and Morris, 1993) and is the fraction of drug which is unbound in blood (see Table 

S4). The predicted hepatic clearance ( ) values were then compared to observed 

hepatic clearance ( ) values (referring to whole blood concentrations), which 

were calculated with Eq.5 under the assumption of no extra-hepatic metabolism. 

                 (Eq.5) 

, where  is the total clearance (referring to whole blood) that has been observed in 

humans (see values in Table S4) and  is the fraction of drug excreted unchanged in 

urine (see values in Table S4). The overall agreement between the observed and the 

predicted hepatic clearance values was determined by the calculation (see Eq.6) of the 

average fold error (AFE) across all the evaluated compounds (N=6). 

                  (Eq.6) 

 
In order to determine an empirical scaling factor (ESF) that could be used prospectively 

for PBPK modeling of a new compound, the average fold error was also calculated in the 

scale of intrinsic clearances (fold-error between the in vitro determined intrinsic 

clearance derived from Eq.2 and the in vivo observed intrinsic clearance deriving from 

the rearrangement of Eqs.3, 4 for a given value of observed hepatic clearance (Hallifax et 

al., 2010)). 

QH

fub

CLH ( pred )

CLH (obs )

CLH (obs) =CLtotal ⋅ 1− fren( )
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1.7. Lidocaine as a case-example of population in vitro – in vivo translation 

The development of a population PBPK model for lidocaine is described in this work, in 

order to clearly illustrate with the aid of a case-example, the framework under which liver 

MPS data can be translated to predictions of in vivo concentration-time profiles at the 

population level. The main reasons why lidocaine was selected among the other in vitro 

evaluated compounds for such an illustration are reported below. Firstly, high-quality in 

vivo pharmacokinetic data after IV administration are available across different 

individuals (Tucker and Boas, 1971), offering the ability to validate our predictions. In 

order to do so, model simulations were performed in accordance to the design of this 

published study. Secondly, lidocaine was the compound for which we obtained the most 

precise estimate of inter-donor variability through the model-based analysis of the in vitro 

data (see Table 1, main manuscript). Finally the hepatic extraction ratio of lidocaine (0.63 

(Tucker and Mather, 1975)) is such that the observed in vivo variability in clearance 

should depend jointly on both the variability in intrinsic hepatic clearance and the 

variability in hepatic blood flow. This gives us the chance to illustrate the importance of 

considering population variability on both drug-related and system-related parameters. 

1.8. Mass balance differential equations of the lidocaine PBPK model  

The lidocaine PBPK model was mathematically described with a system of 14 mass 

balance ordinary differential equations (see Eqs.7-11). 

Arterial blood concentrations (Eq.7): 

�������������� Var ⋅
dCar

dt
= Qlu ⋅

Clu

KPlu:B

−Cart

⎛
⎝⎜

⎞
⎠⎟
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Lung concentrations (Eq.8): 

�������������� 

Venous blood concentrations (Eq.9): 

Vve ⋅
dCve

dt
= QT

T ≠sp,gu
∑ ⋅ CT

KPT :B

+ INF ⋅ IR −Qlu ⋅Cve ��

Liver concentrations (Eq.10): 

� 

�Other non-eliminating tissues concentrations (Eq.11): 

�� ������������� �������� 

, where , , and� �correspond respectively to volumes, blood flows, 

concentrations and tissue-to-blood partition coefficients associated with the model 

tissues/compartments. The subscripts ar, lu and ve correspond to arterial blood, lung and 

venous blood compartments respectively; the subscript ha refers to the hepatic artery; 

while the subscript T can refer to any of the following compartments: muscle (mu), brain 

(br), kidney (ki), heart (he), spleen (sp), gut (gu), liver (li), adipose (ad), skin (sk), bone 

(bo) and rest of the body (ro).  corresponds to the lidocaine infusion rate of 3 mg/kg 

given intravenously over a 3-minute period; INF  is a dummy variable which takes the 
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value of 1 when t ≤ 3 mins and 0 when t > 3 mins; and is the fraction of drug which 

is unbound in blood.  

1.9. System-related parameters and the associated population variability   

The generation of system-related parameters (organ volumes, blood flows) that were used 

as an input in the lidocaine PBPK model simulations is described below. The volumes of 

the different model compartments were allowed to vary across the simulated population 

through dependence on the total body weight of each individual (see Eq.12). 

� ���������������(Eq.12) 

, where  is the volume that corresponds to tissue/compartment j in the individual i ,

�is the total body weight of individual i;  is the fraction of total body weight 

corresponding to the tissue/compartment j in the individual i (see Table S8 for the 

average population values); and  is the density relating to the tissue/compartment j 

(used for mass-to-volume conversion, see Table S8). The total body weight of each 

simulated individual i was generated by random sampling from a normal distribution with 

mean 69 kg and standard deviation 6.2 (average weight and standard deviation in the 

published lidocaine study (Tucker and Boas, 1971)). In order to take into account 

additional stochastic variability in organ volumes that cannot be explained just by total 

body weight differences, the fractional weight parameters ( ) in Eq.12 were also 

allowed to vary between individuals (for example the fraction of total body weight 

corresponding to muscle tissue is not exactly 0.4 for all individuals). More specifically 

fub

Vji = fWTji
⋅WTi ⋅

1

dj

⎛

⎝⎜
⎞

⎠⎟

Vji

WTi fWTji

d j

fWTji
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these parameters were randomly sampled from a 14-dimensional (equal to the number of 

compartments in the model) logistic-normal distribution in order to constrain their sum 

across all the different model compartments to be always equal to 1 (Tsamandouras et al., 

2015). The characteristics of this logistic-normal distribution were tuned accordingly to a 

previously proposed methodology (Tsamandouras et al., 2015), in order to generate 

population distributions of fractional weight parameters ( ) that have means matching 

exactly the values known from physiology for each organ (see Table S8) and a coefficient 

of variation of 10%.  

The blood flows associated with the different model compartments were allowed to vary 

across the simulated population through dependence on the cardiac output of each 

individual (see Eq.13) 

���������������(Eq.13) 

, where  is the blood flow that corresponds to tissue/compartment j in the individual i 

; �is the cardiac output of individual i; and  is the fraction of cardiac output 

corresponding to the tissue/compartment j in the individual i (see Table S8 for the 

average population values). The cardiac output of each simulated individual i was 

generated from an allometric relationship that uses the sampled weight of each individual 

as an input (Eq.14) (Nestorov, 2001) 

� ����������(Eq.14)��

fWTji

Qji = fCOji
⋅COi

Qji

COi fCOji

COi = 187 ⋅WTi
0.81
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,� where  is expressed in mL/min and  in kg. In order to take into account 

additional stochastic variability in blood flows that cannot be explained just by 

differences in cardiac output, the respective fractional parameters ( ) in Eq.13 were 

also allowed to vary between individuals (for example the fraction of cardiac output that 

goes to the muscle is not exactly 0.17 for all individuals). These parameters were sampled 

from an 11-dimensional (equal to the number of compartments in the model (14) minus 

the two blood compartments and the lung compartment which is perfused by the total 

cardiac output) logistic normal distribution. Similarly to above, the characteristics of this 

logistic normal distribution were tuned accordingly to a previously proposed 

methodology (Tsamandouras et al., 2015), in order to generate population distributions of 

fractional cardiac output parameters ( ) that have means matching exactly the values 

known from physiology for each organ (see Table S8) and a coefficient of variation of 

10%.  

1.10. Drug-related parameters and the associated population variability   

All the drug-related parameters that were used as an input in the lidocaine PBPK model 

simulations are summarized in Table S9. In a previous study with 24 individuals 

(Routledge et al., 1980), the lidocaine fraction unbound in plasma ( ) was reported to 

be on average 0.302 with a standard deviation of 0.055 and thus this information was 

used to construct a normal distribution from which the  parameter was randomly 

sampled. The lidocaine blood-to-plasma ratio ( ) has been also previously reported in 

humans (Tucker and Mather, 1975) to be on average 0.84 with a standard deviation of 

COi WTi

fCOji

fCOji

fup

fup

BP
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0.08 (n=5 subjects) and thus this parameter was also randomly sampled from the 

respective normal distribution. The fraction unbound in blood parameter  ( ) was 

calculated for each individual with Eq.15. 

� ���������������(Eq.15)�

Tissue-to-plasma unbound partition coefficients ( ) for all tissues (apart form the 

rest of body compartment) were in silico predicted with the mechanistic equations 

developed by Rodgers and Rowland (Rodgers et al., 2005). These equations require input 

parameters referring to human tissue composition (e.g. fraction of intracellular / 

extracellular water, volume of neutral lipids / phospholipids etc.), which were extracted 

across different organs from (Poulin et al., 2011). Additional drug-related 

physicochemical parameters are needed for these equations, thus a logP of 2.26 and a 

pKa of 8.01 were used for lidocaine (Poulin and Theil, 2009). The predicted tissue-to-

plasma unbound partition coefficients ( ) were subsequently converted with Eq.16 

for each individual to the tissue-to-blood partition coefficients ( ), which were used 

in the model’s differential equations (see Eqs.7-11).  

� ��������������(Eq.16)�

Note that population variability on the tissue composition parameters was not considered 

due to the lack of any relevant information and thus any variability on the calculated 

tissue-to-blood partition coefficients arise solely from the variability in the  and  

fub

fub =
fup

BP
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KPT :B

KPT :B =
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parameters. Finally, the predicted partition coefficients were averaged for each individual 

across all the different tissues and this average was assigned as the partition coefficient of 

the complementary rest of body compartment. 

The value of unbound intrinsic clearance ( ) along with the associated inter-donor 

variability determined in the liver MPS for lidocaine (see Table 1, main manuscript) was 

used to construct the respective log-normal distribution from which this parameter was 

randomly sampled for model simulations. The sampled unbound intrinsic clearance for 

each individual was subsequently scaled up to a human liver unbound intrinsic clearance 

( ) using Eq.17.  

����������������  (Eq.17)�

, where  is the standard human hepatocellularity of 120 million cells / g of liver 

(Hakooz et al., 2006);  is the fraction of total body weight that corresponds to liver 

in each individual; is the total body weight of each individual (both  and are 

randomly generated for each simulated individual with a procedure described above); and 

finally  is an empirical scaling factor that was determined across all the evaluated in 

this work compounds and aims to correct for the intrinsic clearance under-prediction of 

the in vitro system (see section 1.6). The value for  was 8.7 (see “Prediction of in 

vivo hepatic clearance” in Results, main manuscript) when the well-stirred model (which 

is more relevant to our PBPK model assumptions compared to the parallel-tube model) 

was considered. The idea behind the utilization of this empirical scaling factor stems 

from the fact that we wanted to mimic the situation where it is desirable to perform 

CLint(u )

CLint(u ),H

CLint(u ),H = CLint(u ) ⋅HC ⋅ fWTli
⋅WT ⋅ESF

HC

fWTli

WT fWTli
WT
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predictions for a new chemical entity, when clinical data for this compound are not yet 

available (as it is usually the case in the early stages of drug development) and the only 

available information is how the in vitro system performs across a range of different 

compounds. Since the experimental data for only 6 compounds were available in this 

work, the employed ESF is only for illustration of the approach purposes. A larger and 

more diverse set of compounds needs to be evaluated in the studied liver MPS, in order to 

determine a robust system-specific empirical scaling factor.  

 

2. Supplementary Results 

�

2.1. Quantitative analysis of the cell culture phenotypic metrics 

Out of the total of 108 wells ((5 donors + 1 pool) x 6 compounds x 3 replicate wells) that 

were seeded and intended for the drug metabolism study, the vast majority (103) were 

associated with robust formation of 3D micro-tissues that were consistent/comparable 

across the different donors and were maintained throughout the culture period (Figure 

S6). Poor tissue formation was observed for only 5 wells, justified based on microscope 

pictures in conjunction with an albumin production rate being less than 2 μg / 106 cells / 

day. Results corresponding to these 5 wells were discarded from the subsequent analysis. 

Pre-dose (measured at day 4) albumin, urea and LDH levels are illustrated in Figure 1 

(main manuscript), stratified across different donors. Substantial and statistically 

significant differences in albumin production (p = 4⋅10-15, one-way ANOVA) were 

observed across hepatocytes from the 5 different donors (see Figure 1, main manuscript). 
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Similarly, significant inter-donor differences (see Figure 1, main manuscript) were 

detected in both urea production (p = 6⋅10-7, one-way ANOVA) and LDH release (p = 

5⋅10-34, one-way ANOVA). These three metrics (albumin, urea and LDH) were correlated 

at the individual level, as the donors that were associated with high albumin production 

were also jointly associated with high urea production and low LDH release levels (e.g. 

donor Hu1601, see Figure 1, main manuscript). On the contrary, donors that were 

associated with low albumin production were also jointly associated with low urea 

production and high LDH release levels (e.g. donor Hu8150, see Figure 1, main 

manuscript). The pre-dose quality control (phenotypic) metrics (albumin, urea and LDH) 

were also merged across the 5 different donors and compared with the equivalent metrics 

from the pooled hepatocytes (see Figure 1, main manuscript). Although no difference was 

observed in albumin production (p = 0.79, two sample t-test), the pooled hepatocytes 

were associated with higher urea production (p = 0.001, two sample t-test) and higher 

LDH levels (p = 3⋅10-4, Welch’s unequal variances t-test).  

A comparison between the pre-dose (measured at day 4) and the post-dose (measured at 

day 6 for diclofenac, propranol, lidocaine and ibuprofen and day 5 and 7 for phenacetin 

and prednisolone respectively) quality control (phenotypic) metrics, stratified across 

different treatments (compounds) is illustrated in Figure 2 (main manuscript). It was 

evident that across all treatments, post-dose albumin production for a given donor/well 

was significantly increased (p < 0.001, paired sample t-test) compared to the equivalent 

pre-dose levels (see Figure 2, main manuscript). In addition, across all treatments 

significantly lower levels of LDH release (p < 0.001, paired sample t-test) were detected 

at post-dose measurements (see Figure 2, main manuscript). With regard to urea 
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production an overall trend of significant increase at post-dose (p < 0.05, paired sample t-

test) was observed for all treatments except ibuprofen (no significant change between 

pre- and post-dose) and prednisolone (significant decrease post- compared to pre-dose, 

p<0.001, paired sample t-test). A one-way ANOVA between the post-dose metrics across 

all the treatments with post-dose metrics evaluated at the same day (day 6 for diclofenac, 

ibuprofen, lidocaine and propranolol) indicated no significant inter-treatment differences 

at the post-dose albumin (p = 0.53) urea (p = 0.24) and LDH (p = 0.09) levels (see Figure 

2, main manuscript). This further indicates that the observed differences between pre-

dose and post-dose metrics (e.g. albumin) are due to the increased period in culture rather 

than due to a treatment effect.  

2.2. Numerical summary of the drug depletion data available to the 

pharmacokinetic analysis 

From the designed 90 concentration measurements for the metabolic depletion of each 

compound ((5 donors + 1 pool) x 3 wells x 5 sampling times), the pharmacokinetc 

analysis included 79, 90, 84, 84, 85 and 85 measurements for propranolol, prednisolone, 

phenacetin, lidocaine, ibuprofen and diclofenac respectively. The rest of the 

measurements were discarded either because they were below the limit of quantification 

(6, 0, 1, 1, 0 and 0 measurements for propranolol, prednisolone, phenacetin, lidocaine, 

ibuprofen and diclofenac respectively) or because they corresponded to one of the five 

wells (see section 2.1) with poor tissue formation (5, 0, 5, 5, 5 and 5 measurements for 

propranolol, prednisolone, phenacetin, lidocaine, ibuprofen and diclofenac respectively). 
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2.3. Investigation of bias introduced by the assumption of mono-exponential 

decline for diclofenac 

The one-compartment pharmacokinetic model that was assumed by default for drug 

depletion, provided an adequate description of the data, as the majority of the compounds 

exhibited mono-exponential declines in their concentration-time profiles. A special note 

should be made only with regard to diclofenac, as the observed concentration-time 

profiles indicate that a model of bi-exponential decline might be more appropriate. 

Indeed a two-compartment pharmacokinetic model provided a slightly better description 

of the data in terms both of objective function value and model diagnostics (data not 

shown). However, the instance of such a second (peripheral) compartment is difficult to 

be explained physiologically, as the results of the non-specific binding to the platform 

analysis (see main manuscript) indicated no partition of diclofenac to the actual platform. 

Several other speculations can be made regarding the origin of this biphasic behavior 

(e.g. nonlinear binding to BSA in the media, distribution to intracellular components, 

time-dependent change in metabolic activity etc.), however none of these can be robustly 

supported with the available data in order to be taken into account in our modeling. In 

order to assure that the assumption of mono-exponential decline used here did not 

substantially bias the obtained diclofenac intrinsic clearance and the associated inter-

donor variability, the intrinsic clearance was also calculated in each donor/well using a 

standard non-compartmental analysis approach (ratio of the amount of drug in media at 

time 0 over the calculated 0 to infinity area under the concentration-time curve (AUC0-

∞)), as has been previously suggested for such cases (Di and Obach, 2015). Using the 

latter approach the estimate of the typical unbound intrinsic clearance ( ) for CLint(u)
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diclofenac was 18.04 μL/min/106 cells (calculated as the geometric mean across all 

donors/wells) and the associated inter-donor variability CV was 35.3% (calculated using 

the averaged intrinsic clearances across different wells for each donor). These values 

were in very close agreement with the values obtained from the modeling of the data 

(17.8 μL/min/106 cells and 36.2% respectively, see Table 1 in main manuscript), 

indicating that the mono-exponential decline assumption for diclofenac is not introducing 

any substantial bias for the purpose of this work. 
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4. Supplementary Tables  
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Table S1: Primer sequences used to analyze hepatic gene expression by QPCR 
Target transcript Forward primer Reverse primer 

GAPDH ACAGTTGCCATGTAGACC TTTTTGGTTGAGCACAGG 
ABCB11 / BSEP CAGATTACAAATGAAGCCCTC TCCATATCTGTAGGAAGCAG 
ABCC2 / MRP2 AAATTGCTGATCTCCTTTGC GATAGCTGTCCGTACTTTTAC 
CYP1A2 CACTATCAGGACTTTGACAAG AGGTTGACAATCTTCTCCTG 

CYP7A1 AAATCTACCCAGACCCTTTG TTCCAGGACATATTGTAGCTC 
SLC10A1 / NTCP CTTTCTGCTGGGTTATGTTC CTGGAAAATCATGTAGAGGAG 
HNF4α AGTACATCCCAGCTTTCTG AATGTAGTCATTGCCTAGGAG 
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Table S2: Gene expression differences between Liverchip-cultured and freshly isolated hepatocytes  
Gene fold-change (a) p-value (b) Gene description 

ABCB1 1.54 0.0273 ATP-binding cassette, sub-family B (MDR/TAP), member 1 

ABCC1 3.00 0.2114 ATP-binding cassette, sub-family C (CFTR/MRP), member 1 

AOC1 0.28 0.0363 Amiloride binding protein 1 (amine oxidase (copper-containing)) 

ADH1B 0.51 0.1010 Alcohol dehydrogenase 1B (class I), beta polypeptide 
ADH1C 0.58 0.1023 Alcohol dehydrogenase 1C (class I), gamma polypeptide 
ADH4 0.06 0.0510 Alcohol dehydrogenase 4 (class II), pi polypeptide 
ADH5 1.31 0.7147 Alcohol dehydrogenase 5 (class III), chi polypeptide 
ADH6 0.25 0.0542 Alcohol dehydrogenase 6 (class V) 
AHR 0.45 0.0182 Aryl hydrocarbon receptor 
ALAD 0.52 0.0466 Aminolevulinate dehydratase 
ALDH1A1 4.36 0.0127 Aldehyde dehydrogenase 1 family, member A1 
ALOX12 2.97 0.0220 Arachidonate 12-lipoxygenase 
ALOX15 0.82 0.5782 Arachidonate 15-lipoxygenase 
ALOX5 1.12 0.8030 Arachidonate 5-lipoxygenase 
APOE 6.60 0.5652 Apolipoprotein E 
ARNT 1.10 0.5941 Aryl hydrocarbon receptor nuclear translocator 
ASNA1 1.75 0.0002 ArsA arsenite transporter, ATP-binding, homolog 1 (bacterial) 
BLVRA 14.10 0.0004 Biliverdin reductase A 
BLVRB 0.64 0.0937 Biliverdin reductase B (flavin reductase (NADPH)) 
BSEP 1.31 0.7712 Bile salt export pump 

CES1 1.40 0.1227 Carboxylesterase 1 
CES2 0.82 0.3689 Carboxylesterase 2 
CES3 0.51 0.1392 Carboxylesterase 3 
CHST1 0.73 0.9417 Carbohydrate (keratan sulfate Gal-6) sulfotransferase 1 
COMT 0.96 0.6338 Catechol-O-methyltransferase 
CYB5R3 1.44 0.0572 Cytochrome b5 reductase 3 
CYP11B2 0.30 0.1706 Cytochrome P450, family 11, subfamily B, polypeptide 2 
CYP17A1 0.29 0.2176 Cytochrome P450, family 17, subfamily A, polypeptide 1 
CYP19A1 1.12 0.5368 Cytochrome P450, family 19, subfamily A, polypeptide 1 
CYP1A1 1.78 0.4547 Cytochrome P450, family 1, subfamily A, polypeptide 1 
CYP1A2 0.37 0.0971 Cytochrome P450, family 1, subfamily A, polypeptide 2 
CYP2B6 0.09 0.0232 Cytochrome P450, family 2, subfamily B, polypeptide 6 
CYP2C19 0.37 0.1069 Cytochrome P450, family 2, subfamily C, polypeptide 19 
CYP2C8 0.13 0.0188 Cytochrome P450, family 2, subfamily C, polypeptide 8 
CYP2C9 0.26 0.0295 Cytochrome P450, family 2, subfamily C, polypeptide 9 
CYP2D6 0.74 0.3833 Cytochrome P450, family 2, subfamily D, polypeptide 6 
CYP2E1 0.01 0.0001 Cytochrome P450, family 2, subfamily E, polypeptide 1 
CYP2F1 0.38 0.0337 Cytochrome P450, family 2, subfamily F, polypeptide 1 
CYP2J2 0.41 0.0107 Cytochrome P450, family 2, subfamily J, polypeptide 2 
CYP3A4 1.38 0.7600 Cytochrome P450, family 3, subfamily A, polypeptide 4 
CYP3A5 0.49 0.0512 Cytochrome P450, family 3, subfamily A, polypeptide 5 
CYP7A1 9.94 0.3922 Cytochrome P450, family 7, subfamily A, polypeptide 1 
EPHX1 1.80 0.0443 Epoxide hydrolase 1, microsomal (xenobiotic) 
FAAH 0.78 0.3217 Fatty acid amide hydrolase 
FBP1 0.23 0.0370 Fructose-1,6-bisphosphatase 1 
GAD1 3.19 0.0488 Glutamate decarboxylase 1 (brain, 67kDa) 
GAD2 0.36 0.0734 Glutamate decarboxylase 2 (pancreatic islets and brain, 65kDa) 
GCKR 0.27 0.0111 Glucokinase (hexokinase 4) regulator 
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GPI 1.95 0.0155 Glucose-6-phosphate isomerase 
GPX1 2.42 0.0001 Glutathione peroxidase 1 
GPX2 0.23 0.0345 Glutathione peroxidase 2 (gastrointestinal) 
GPX3 0.94 0.4559 Glutathione peroxidase 3 (plasma) 
GPX4 2.01 0.0357 Glutathione peroxidase 4 (phospholipid hydroperoxidase) 
GPX5 0.38 0.0337 Glutathione peroxidase 5 (epididymal androgen-related protein) 
GSR 3.18 0.0006 Glutathione reductase 
GSTA3 0.25 0.0951 Glutathione S-transferase alpha 3 
GSTA4 1.06 0.3173 Glutathione S-transferase alpha 4 
GSTM2 0.61 0.2606 Glutathione S-transferase mu 2 (muscle) 
GSTM3 3.14 0.0214 Glutathione S-transferase mu 3 (brain) 
GSTM5 0.40 0.0419 Glutathione S-transferase mu 5 
GSTP1 2.26 0.1520 Glutathione S-transferase pi 1 
GSTT1 0.75 0.2724 Glutathione S-transferase theta 1 
GSTZ1 0.36 0.0144 Glutathione transferase zeta 1 
HK2 0.67 0.2588 Hexokinase 2 
HNF4a 2.25 0.0069 Hepatocyte nuclear factor 4, alpha  

HSD17B1 2.21 0.0631 Hydroxysteroid (17-beta) dehydrogenase 1 
HSD17B2 0.44 0.0046 Hydroxysteroid (17-beta) dehydrogenase 2 
HSD17B3 1.15 0.7343 Hydroxysteroid (17-beta) dehydrogenase 3 
LPO 0.39 0.0338 Lactoperoxidase 
MGST1 2.19 0.0502 Microsomal glutathione S-transferase 1 
MGST2 0.36 0.0152 Microsomal glutathione S-transferase 2 
MGST3 1.00 0.8597 Microsomal glutathione S-transferase 3 
MPO 0.75 0.4944 Myeloperoxidase 
MRP2 1.56 0.2334 Multidrug resistance-associated protein 2 

MT2A 0.03 0.0054 Metallothionein 2A 
MT3 0.38 0.0337 Metallothionein 3 
MTHFR 0.72 0.3567 Methylenetetrahydrofolate reductase (NAD(P)H) 
NAT1 0.51 0.0809 N-acetyltransferase 1 (arylamine N-acetyltransferase) 
NAT2 0.80 0.1619 N-acetyltransferase 2 (arylamine N-acetyltransferase) 
NOS3 0.58 0.4472 Nitric oxide synthase 3 (endothelial cell) 
NQO1 25.24 0.0606 NAD(P)H dehydrogenase, quinone 1 
NTCP 0.75 0.2870 Na(+)/Taurocholate transport protein 

PKLR 2.42 0.1997 Pyruvate kinase, liver and RBC 
PKM 19.41 0.0009 Pyruvate kinase, muscle 
PON1 0.44 0.0528 Paraoxonase 1 
PON2 0.91 0.4159 Paraoxonase 2 
PON3 0.15 0.0008 Paraoxonase 3 
SNN 4.23 0.0008 Stannin 
SRD5A1 1.03 0.7832 Steroid-5-alpha-reductase, alpha polypeptide 1  
SRD5A2 0.68 0.1688 Steroid-5-alpha-reductase, alpha polypeptide 2  
(a) Average fold-change for each gene that has been calculated by averaging (geometric mean) across all the different donors 

and pool of donors the fold difference (ratio) of relative mRNA expression in the liver MPS (day 6) compared to freshly 
isolated hepatocytes. Therefore values higher than 1 indicate up-regulation in the liver MPS compared to the freshly 
isolated hepatocytes while values lower than 1 indicate down-regulation.    

(b) p-values correspond to a paired t-test regarding the the null hypothesis of non-significant differences between the relative 
mRNA expression in the liver MPS compared to freshly isolated hepatocytes across all the different donors and pool of 
donors. The genes for which we detected significant differences after multiple testing correction (control false discovery 
rate at the 0.05 level with the Benjamini-Hochberg procedure) are highlighted in color (red for significant up-regulation in 
the liver MPS and blue for significant down-regulation in the liver MPS).   
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Table S3: Intercept and coefficients of the developed Lasso regression model 
Term Value 

Intercept 1.0143 
Albumin production (pre-dose) 0.0510 
Urea production (pre-dose) 0.0102 
LDH release (pre-dose) -0.4254 
Normalized CYP mRNA (day 6) 0.2514 
The regression coefficients associated with albumin production, urea production and CYP mRNA 
levels indicate a positive relationship with intrinsic clearance, while the coefficient associated with 
LDH levels indicates a negative relationship of this variable with intrinsic clearance.�
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Table S4: Parameters related to the comparison of in vitro clearance to in vivo data 
Compound fub 

(a) fren (%) (b) CLtotal 
(c) CLH(obs) 

(d) CLH(pred,WS) 
(e) CLH(pred,PT) 

(f) 

Propranolol 0.14 0.25 13.2 13.17 1.55 1.61  
Prednisolone 0.10 16.0 2.4 2.02 0.25 0.25 
Phenacetin 0.60 0.5 19.6 19.50 9.18  11.37 
Lidocaine 0.33 8.0 11.5 10.58 3.67 4.01 
Ibuprofen 0.015 0.5 0.81 0.806 0.23 0.23 
Diclofenac 0.014 0.5 4.0 3.98 0.74 0.75 

 (a) Fraction of unbound drug in blood. Values obtained from (Hallifax et al., 2010).  
(b) Fraction of drug excreted unchanged in urine. Values for all drugs apart from phenacetin were obtained from (Benet et al., 

2011). Value for phenacetin was obtained from (Prescott, 1980).   
(c) Total clearance (referring to whole blood) that has been observed in humans (expressed in mL/min/kg of body weight). 

Values for all drugs were obtained from (Hallifax et al., 2010). 
(d) Hepatic clearance (referring to whole blood) observed in humans (expressed in mL/min/kg of body weight). 
(e) Predicted hepatic clearance (referring to whole blood) in humans (expressed in mL/min/kg of body weight) using the in vitro 

data along with the well-stirred model. 
(e) Predicted hepatic clearance (referring to whole blood) in humans (expressed in mL/min/kg of body weight) using the in vitro 

data along with the parallel tube model. 
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Table S5: Mass spectrometry parameters and suppliers for hepatocyte metabolism samples 
Compound Parent (m/z) Daughter (m/z) Cone (V) Collision energy (eV) Supplier LC-MS/MS method 

Ibuprofen 205.1 161.0 20 5 Sigma A 
Acetaminophen* 152.1 93.0 10 22 Sigma B 
Acetaminophen* 152.1 110.1 10 16 Sigma B 
Phenacetin*

 
180.1 93.0 50 22 Sigma B 

Phenacetin* 180.1 110.1 50 22 Sigma B 
2-Hydroxyibuprofen* 240.2 107.1 10 28 Santa Cruz Biotec. B 
2-Hydroxyibuprofen* 240.2 205.2 10 10 Santa Cruz Biotec. B 
Propranolol* 260.2 56.0 16 28 Sigma B 
Propranolol* 260.2 116.1 16 16 Sigma B 
Lidocaine* 235.2 58.1 22 34 Sigma B 
Lidocaine* 235.2 86.1 22 16 Sigma B 
Diclofenac 296.3 215.1 16 16 Sigma B 
4-Hydroxydiclofenac 312.0 230.1 34 28 Sigma B 
Prednisolone* 361.2 147.1 16 22 Sigma B 
Prednisolone* 361.2 343.2 16 10 Sigma B 
6β-Hydroxyprednisolone** 341.0 237.0 10 15 Santa Cruz Biotec. B 
6β-Hydroxyprednisolone** 341.1 323.0 10 10 Santa Cruz Biotec. B 
6β-Hydroxyprednisolone** 377.1 323.0 10 10 Santa Cruz Biotec. B 
6β-Hydroxyprednisolone** 377.1 341.0 10 5 Santa Cruz Biotec. B 
Acetaminophen 152.0 110.0 65 16 Sigma C 
Phenacetin

 
180.0 110.0 35 10 Sigma C 

2-Hydroxyibuprofen 240.1 204.8 35 10 SCBT C 
Propranolol 260.0 116.0 35 16 Sigma C 
Diclofenac 295.9 214.8 35 16 Sigma C 
4-Hydroxydiclofenac 312.0 230.9 41 16 Sigma C 
Prednisolone 361.2 343.1 53 10 Sigma C 
6β-Hydroxyprednisolone 377.1 341.1 47 10 Santa Cruz Biotec. C 
* Traces for these transitions were combined in order to maximize sensitivity. 

** Parent m/z was reduced probably due to water loss in the mass spectrometer source, all 4 traces were combined to maximize sensitivity. 
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Table S7: Mass spectrometry parameters and suppliers for tissue culture medium binding samples 

Compound Parent (m/z) Daughter (m/z) Cone (V) Collision energy (eV) Supplier LC-MS/MS method 

Prednisolone 361.0 147.0 22 10 Sigma D 
Phenacetin  180.1 109.9 28 22 Sigma D 
Lidocaine  235.0 85.8 22 16 Sigma D 
Diclofenac*

 
295.9 214.0 16 28 Sigma D 

Diclofenac* 295.9 214.9 16 22 Sigma D 
Diclofenac* 295.9 250.0 16 10 Sigma D 
Propranolol* 260.0 116.0 22 16 Sigma D 
Propranolol* 260.0 183.0 22 16 Sigma D 
Ibuprofen 205.1 161.0 20 5 Sigma E 

* Traces for these transitions were combined in order to maximize sensitivity. 
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Table S8: System-related parameters related to the lidocaine PBPK model 

Compartment  (a)  
(b)  

(c) 

Arterial blood 0.0257 1 1.05 
Lungs 0.0076 1 1.05 
Venous blood 0.0514 1 1.05 
Spleen 0.0026 0.03 1.05 
Gut 0.0171 0.16 1.04 
Liver 0.0257 0.065 1.04 
Brain 0.0200 0.12 1.04 
Heart 0.0047 0.04 1.03 
Kidney 0.0044 0.19 1.05 
Skin 0.0371 0.05 1.12 
Muscle 0.4000 0.17 1.04 
Adipose 0.2142 0.05 0.92 
Bone 0.1429 0.05 1.58 
Rest of Body 0.0466 0.075 1.04 

(a) Fraction of total body weight corresponding to each tissue/compartment. All values have been obtained from (Brown et al., 
1997), apart from those corresponding to arterial and venous blood which have been obtained form (Jones et al., 2006) and the 
rest of body compartment which derives through the constraint that fractions across all tissue/compartments should add up to 1. 
Value reported for the gut compartment refers to gastrointestinal tract. Value reported for the bone compartment refers to both 
bone and marrow. A coefficient of variation of 10% has been assigned around the reported values through a logistic-normal 
distribution (see section 1.9). 

(b) Fraction of cardiac output corresponding to each tissue/compartment. All values have been obtained from (ICRP, 2002), apart 
from the one corresponding to the rest of body compartment which derives through the constraint that fractions across all tissues 
(except of lung that receives the total cardiac output) should add up to 1. Value reported for the liver compartment refers only to 
hepatic artery. Value reported for the gut compartment has been calculated as the total hepatic blood flow (25.5% of cardiac 
output) minus the hepatic artery blood flow (6.5% of cardiac output) minus the spleen blood flow (3% of cardiac output).  A 
coefficient of variation of 10% has been assigned around the reported values through a logistic-normal distribution (see section 
1.9). 

(c) Organ density used for mass-to-volume convertions. Values for lungs, spleen, gut, brain, heart, kidney, skin, muscle, adipose and 
bone have been obtained from (Brown et al., 1997). Specifically, gut density has been calculated as the weighted average of the 
reported values for stomach, small intestine and large intestine. Skin density refers to dermis. Bone density has been calculated 
as the weighted average of the values reported for cortical bone, trabecular bone, red marrow and wellow marrow. Blood density 
has been obtained from (Trudnowski and Rico, 1974). A value of 1.04 was assumed when density has not been reported (liver, 
rest of body) based on (Brown et al., 1997). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

fWT fCO d j



� ��

 
Table S9: Drug-related parameters related to the lidocaine PBPK model 
Parameter Value 

  0.302 

  0.84 

  5.51 

 4.91 

 4.24 

 6.84 

 1.96 

 3.56 

 7.19 

 2.49 

 3.92 

 1.48 

 2.16 

 4.02 

  4.38 

  8.70 
Values above correspond to typical / average values. When population variability is incorporated in any of the above 
parameters in the model simulations, this is explicitly described in the text (see section 1.10). fup corresponds to fraction 
unbound in plasma and BP to the blood-to-plasma ratio; KPT:B corresponds to the tissue-to-blood partition coefficient 
and the indices lu, sp, gu, li, br, he, ki, sk, mu, ad, bo, ro, correspond to the lung, spleen, gut, liver, brain, heart, kidney, 
skin, muscle, adipose, bone and rest of body tissue/compartments respectively; CLint(u) corresponds to the in vitro liver 
MPS-determined unbound intrinsic clearance and is reported in μL/min/106 cells; ESF corresponds to an empirical 
scaling factor determined across all the compounds evaluated in this work (see section 1.10). 
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Figure S1. Schematic structure of the employed lidocaine PBPK model. Different organ/tissues are 
represented as different compartments connected by perfusing blood. RoB represents the rest of body 
compartment. CLint represents the hepatic metabolic intrinsic clearance. Qi refers to the blood flow 
perfusing the different organ/tissues and subscripts “i” are defined as: lu (lungs), mu (muscle), br 
(brain), ki (kidney), he (heart), sp (spleen), ha (hepatic artery), gu (gut), li (liver), ad (adipose), sk (skin), 
bo (none), ro (rest of body). The blood flow exiting the liver compartment is the sum of the blood flows 
assigned to the hepatic artery, gut and spleen (Qli = Qha + Qgu + Qsp).�
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Figure S2. Post-dose albumin production (measured at day 6 for diclofenac, propranol, lidocaine and 
ibuprofen and day 5 and 7 for phenacetin and prednisolone respectively) stratified across different 
treatments and donors. “Hu1601”, “Hu1604”, “Hu1624”, “Hu8150” and “Hu8181” are lot numbers 
corresponding to 5 different donors. “Pooled” refers to the pool of hepatocytes from the 5 donors and 
“All donors” refer to the data from all 5 donors merged together. Red lines correspond to the mean of 
the data and the purple boxes extend the mean by ± 1 SD (standard deviation). 
�
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Figure S3. Post-dose urea production (measured at day 6 for diclofenac, propranol, lidocaine and 
ibuprofen and day 5 and 7 for phenacetin and prednisolone respectively) stratified across different 
treatments and donors. “Hu1601”, “Hu1604”, “Hu1624”, “Hu8150” and “Hu8181” are lot numbers 
corresponding to 5 different donors. “Pooled” refers to the pool of hepatocytes from the 5 donors and 
“All donors” refer to the data from all 5 donors merged together. Red lines correspond to the mean of 
the data and the purple boxes extend the mean by ± 1 SD (standard deviation). 
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Figure S4. Post-dose LDH release (measured at day 6 for diclofenac, propranol, lidocaine and ibuprofen 
and day 5 and 7 for phenacetin and prednisolone respectively) stratified across different treatments and 
donors. “Hu1601”, “Hu1604”, “Hu1624”, “Hu8150” and “Hu8181” are lot numbers corresponding to 5 
different donors. “Pooled” refers to the pool of hepatocytes from the 5 donors and “All donors” refer to 
the data from all 5 donors merged together. Red lines correspond to the mean of the data and the purple 
boxes extend the mean by ± 1 SD (standard deviation). LDH levels are expressed in optical density 
(OD) units at 490nm. 
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Figure S5. Correlation matrix plot of all the pre- and post-dose albumin (ALB), urea (URE) and LDH levels 
measured across different donors (or pool of donors) / wells. Each panel illustrates the pairwise correlation 
between the variables in the x and y axis, apart from the panels in the diagonal of the matrix which illustrate a 
histogram of the x-axis variable. The purple line inside each panel corresponds to a linear regression fit. The 
number in the top left corner of each panel refers to the pairwise Pearson’s linear correlation coefficient 
(between -1 and 0 for negative correlations and between 0 and 1 for positive correlations). Indicatively, pre-dose 
and post-dose albumin productions exhibit a Pearson’s correlation coefficient of 0.74, and post-dose albumin and 
post-dose urea production exhibit a coefficient of 0.70. Albumin and urea production is reported in units of 
μg/day and LDH release levels in units of optical density at 490nm. 
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Figure S6. Micro-tissue formation across different donors. Scaffolds from the liver MPS were imaged 
after culture period (at the end of the drug metabolism study) by bright-field microscopy. One 
representative well is presented for each donor (or pool of donors). “Hu1601”, “Hu1604”, “Hu1624”, 
“Hu8150” and “Hu8181” are lot numbers corresponding to 5 different donors. “Pooled” refers to the 
pool of hepatocytes from the 5 donors. 
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Figure S7.  Heatmap and the associated dendrogram resulting from agglomerative hierarchical clustering with 
respect to the fold-change in gene expression between the liver MPS (day 6) and freshly thawed hepatocytes. The 
log2 of fold-change is being considered, thus positive values and red color (see colorbar) indicate up-regulation in 
the liver MPS compared to the freshly thawed hepatocytes and negative values and blue color (see colorbar) 
indicate down-regulation. The intensity of the color corresponds to the degree of up- or down-regulation (see 
colorbar) with darkest red corresponding to at least 8-fold up-regulation in the liver MPS and darkest blue to at 
least 8-fold down-regulation. “Hu1601”, “Hu1604”, “Hu1624”, “Hu8150” and “Hu8181” are lot numbers 
corresponding to the 5 different donors. “Pooled” refers to the pool of hepatocytes from the 5 donors. 
Agglomerative hierarchical clustering was performed with the clustergram function in Matlab and more 
specifically using Ward’s method with a Euclidean distance measure. 
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Figure S8. Comparison of inter-donor variability in mRNA expression levels between freshly thawed 
hepatocytes and liver MPS (day 6). CV on the y-axis refers to coefficient of variation in mRNA 
expression levels across the five donors. Closed gray circles refer to the 90 different genes and black 
lines connect the CV in freshly thawed hepatocytes with the CV in the liver MPS for the same gene. Red 
lines correspond to the mean CV (across all genes) in freshly thawed hepatocytes or the liver MPS, 
purple boxes extend the mean by ± 1 SD (standard deviation) and the pink boxes correspond to 95% 
confidence intervals around the mean. 
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Figure S9. Volcano plots that illustrate the average fold-difference between mRNA expression levels determined 
across individual donors and mRNA expression levels determined in pooled hepatocytes, along with the 
associated statistical significance. The subplots on the left and right respectively refer to the liver MPS (day 6) 
and freshly thawed hepatocytes. The log2 of the fold-difference is plotted on the x-axis, thus positive values 
indicate that pooled hepatocytes under-predict the average mRNA expression obtained across the different 
donors, while negative values indicate over-prediction. Any genes outside the two black vertical lines are 
associated with a more than 3-fold difference. On the y-axis the –log10 of p-value is plotted, thus the higher the 
values, the stronger the statistical evidence that the mRNA expression levels across the different donors come 
from a distribution with mean different to the expression levels determined in the pooled hepatocytes. The genes 
that reached statistical significance after multiple testing correction are highlighted in red color and the 
respective gene names are reported.�
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Figure S10. Non-specific binding to the platform materials of the 6 investigated compounds 
(experiments performed in hepatocyte-free LiverChip). The y-axis refers to the ratio of the measured 
concentrations at 1h and 48h to the respective initial concentration at time 0 (C0). Experiments were 
performed in duplicate for each compound. The media concentrations in cell-free platforms were not 
perturbed more than 20% from the initial concentrations even after 48 hours of incubation. 
�
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�� Drug depletion data available to the pharmacokinetic analysis. “Hu1601”, “Hu1604”, “Hu1624”, “Hu8150” and 
“Hu8181” are lot numbers corresponding to 5 different donors. “Pool” refers to the pool of hepatocytes from the 5 donors. The 
average concentration profile across different wells is plotted for each donor (or pool of donors) and the bars are indicating inter-well 
variability by extending the mean by ± 1 standard deviation. 
 



� ��

 
�

�

Figure S12.  Model predictions regarding the in vitro metabolic depletion of propranolol at the level of each individual donor and 
well. “Hu1601”, “Hu1604”, “Hu1624”, “Hu8150” and “Hu8181” are lot numbers corresponding to 5 different donors. Closed circles 
represent the observed data in each donor and well and solid lines represent the respective model predictions. The model (empirical 

Bayes) estimates for the unbound intrinsic clearance referring to the ith donor and the jth well ( ) are also reported (in 

μL/min/106 cells). 
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���Model description of the drug depletion data determined in pooled hepatocytes. Closed gray circles represent the 
observed concentrations in media; highlighted with purple are the areas between the 5th and 95th percentiles of model simulations that 
take into account the different levels of variability (90% prediction intervals), whereas the red solid line represents their median 
(median prediction); the horizontal dashed black line represents the limit of quantification. 
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Figure S14. Available metabolite formation data across different donors/wells. “Hu1601”, “Hu1604”, 
“Hu1624”, “Hu8150” and “Hu8181” are lot numbers corresponding to 5 different donors. “Pool” refers 
to the pool of hepatocytes from the 5 donors. The small numbers on the right of each concentration point 
(taking values of 1, 2 or 3) aim to distinguish different wells across the same donor (or pool of donors). 
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Figure S15. Correlation between the unbound intrinsic clearance for drug depletion regarding to the ith 
donor / jth well (x-axis) and the area under the metabolite concentration-time curve in the same donor / 
well (y-axis). The grey line represents the linear regression and “Rsq” the respective coefficient of 
determination (or R-squared) value. Data referring to different donors are highlighted with different 
colors (see legend). “Hu1601”, “Hu1604”, “Hu1624”, “Hu8150” and “Hu8181” are lot numbers 
corresponding to the 5 different donors. 
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Figure S16. Normalized intrinsic clearance values obtained across different donors/wells plotted against 
the respective phenotypic metrics of interest (upper left: pre-dose albumin production, upper right: pre-
dose urea production, bottom left: pre-dose LDH release, bottom right: normalized CYP mRNA levels). 
Data referring to different donors are highlighted with different colors (see legend). The grey line 
represents the linear regression. Inside each subplot we also report as “Rsq” the respective coefficient of 
determination (or R-squared) value; and as “p” the F-test p-value for a significant linear regression 
relationship between the response (clearance in y-axis) and the predictor variable (x-axis). LDH levels 
are expressed in optical density (OD) units at 490nm. 
 



� ��

 
�

�

�

Figure S17. Trace plot referring to the regularization paths of the Lasso coefficients (a) and the cross-validated 
mean square error (MSE) of the Lasso fit for different values of the regularization parameter λ (b). In (a) the 
regularization paths of the 4 predictors are illustrated with different colors (see legend). In (b) each of the black 
dots represents the cross-validated MSE for different values of the regularization parameter λ, while the grey 
error-bars stretching out of each dot correspond to the associated standard error; the red vertical line highlights 
the value of λ that minimizes the cross-validated MSE (minimum MSE rule for tuning λ); the cyan vertical line 
highlights the highest value of λ (more regularization) that still gives a model with cross-validated MSE within 1 
standard error of the minimum MSE (one standard error rule for tuning λ, which is a common alternative to the 
minimum MSE rule). The models obtained using either of these two rules are highlighted with equivalent color 
vertical lines in the trace plot of the Lasso coefficients (a). It can be observed in (a) that irrespectively of the rule 
used for tuning λ, all 4 variables have non-zero coefficients and thus are identified as significant predictors of 
intrinsic clearance. The results form the model obtained with the minimum MSE rule (red line) were finally 
reported. The trace plot of the Lasso coefficients (a) indicates that among all predictors, the CYP mRNA levels 
is the variable contributing the less to the predictive performance of the model, while LDH release levels is the 
variable contributing the most (the coefficients associated to CYP mRNA levels and LDH release are the first 

and the last respectively to shrink to zero when regularization/penalization is increased (  is 
decreased)). 
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Figure S18. Performance of the Lasso regression model. The predicted from the Lasso model 
normalized intrinsic clearance values (using the model incorporated metrics/predictors measured across 
different donors/wells) are plotted against the respective observed normalized intrinsic clearance values 
(determined through modeling of the drug depletion data). The red diagonal line represents the line of 
unity. “Rsq” is the coefficient of determination (or R-squared) value. 
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Figure S19. Comparison between the observed hepatic clearance in vivo (x-axis) and the predicted hepatic clearance from the in vitro data (y-
axis) using the well-stirred (left) or the parallel tube (right) liver model. In red is the line of unity and the dashed black lines represent the 10-fold 
error. The vertical bars on each prediction represent 95% confidence intervals taking into account the uncertainty (standard error) associated 
with the in vitro estimate of intrinsic clearance. The labels on the right of each prediction are abbreviations of the corresponding compound’s 
name: ibup for ibuprofen; pred for prednisolone; dicl for diclofenac; prop for propranolol; lido for lidocaine; and phen for phenacetin.�


