Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNeuropharmacology

The M1 Muscarinic Receptor Antagonist VU0255035 Delays the Development of Status Epilepticus after Organophosphate Exposure and Prevents Hyperexcitability in the Basolateral Amygdala

Steven L. Miller, Vassiliki Aroniadou-Anderjaska, Volodymyr I. Pidoplichko, Taiza H. Figueiredo, James P. Apland, Jishnu K. S. Krishnan and Maria F. M. Braga
Journal of Pharmacology and Experimental Therapeutics January 2017, 360 (1) 23-32; DOI: https://doi.org/10.1124/jpet.116.236125
Steven L. Miller
Departments of Anatomy, Physiology, and Genetics (S.L.M., V.A.-A., V.I.P., T.H.F., J.K.S.K., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), and Program in Neuroscience (S.L.M., V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland; and Neurotoxicology Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vassiliki Aroniadou-Anderjaska
Departments of Anatomy, Physiology, and Genetics (S.L.M., V.A.-A., V.I.P., T.H.F., J.K.S.K., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), and Program in Neuroscience (S.L.M., V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland; and Neurotoxicology Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Volodymyr I. Pidoplichko
Departments of Anatomy, Physiology, and Genetics (S.L.M., V.A.-A., V.I.P., T.H.F., J.K.S.K., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), and Program in Neuroscience (S.L.M., V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland; and Neurotoxicology Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Taiza H. Figueiredo
Departments of Anatomy, Physiology, and Genetics (S.L.M., V.A.-A., V.I.P., T.H.F., J.K.S.K., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), and Program in Neuroscience (S.L.M., V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland; and Neurotoxicology Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James P. Apland
Departments of Anatomy, Physiology, and Genetics (S.L.M., V.A.-A., V.I.P., T.H.F., J.K.S.K., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), and Program in Neuroscience (S.L.M., V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland; and Neurotoxicology Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jishnu K. S. Krishnan
Departments of Anatomy, Physiology, and Genetics (S.L.M., V.A.-A., V.I.P., T.H.F., J.K.S.K., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), and Program in Neuroscience (S.L.M., V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland; and Neurotoxicology Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Maria F. M. Braga
Departments of Anatomy, Physiology, and Genetics (S.L.M., V.A.-A., V.I.P., T.H.F., J.K.S.K., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), and Program in Neuroscience (S.L.M., V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland; and Neurotoxicology Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Exposure to organophosphorus toxins induces seizures that progress to status epilepticus (SE), which can cause brain damage or death. Seizures are generated by hyperstimulation of muscarinic receptors, subsequent to inhibition of acetylcholinesterase; this is followed by glutamatergic hyperactivity, which sustains and reinforces seizure activity. It has been unclear which muscarinic receptor subtypes are involved in seizure initiation and the development of SE in the early phases after exposure. Here, we show that pretreatment of rats with the selective M1 receptor antagonist, VU0255035 [N-(3-oxo-3-(4-(pyridine-4-yl)piperazin-1-yl)propyl)-benzo[c][1,2,5]thiadiazole-4 sulfonamide], significantly suppressed seizure severity and prevented the development of SE for about 40 minutes after exposure to paraoxon or soman, suggesting an important role of the M1 receptor in the early phases of seizure generation. In addition, in in vitro brain slices of the basolateral amygdala (a brain region that plays a key role in seizure initiation after nerve agent exposure), VU0255035 blocked the effects produced by bath application of paraoxon—namely, a brief barrage of spontaneous inhibitory postsynaptic currents, followed by a significant increase in the ratio of the total charge transferred by spontaneous excitatory postsynaptic currents over that of the inhibitory postsynaptic currents. Furthermore, paraoxon enhanced the hyperpolarization-activated cation current Ih in basolateral amygdala principal cells, which could be one of the mechanisms underlying the increased glutamatergic activity, an effect that was also blocked in the presence of VU0255035. Thus, selective M1 antagonists may be an efficacious pretreatment in contexts in which there is risk for exposure to organophosphates, as these antagonists will delay the development of SE long enough for medical assistance to arrive.

Footnotes

    • Received June 22, 2016.
    • Accepted October 27, 2016.
  • This research was supported by the National Institutes of Health CounterACT Program, the National Institutes of Health Office of the Director, and the National Institutes of Health National Institute of Neurologic Disorders and Stroke [Grant 5U01NS058162-07]. The views of the authors do not purport to reflect the position or policies of the Department of Defense or the U.S. Army.

  • dx.doi.org/10.1124/jpet.116.236125.

  • Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 360 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 360, Issue 1
1 Jan 2017
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The M1 Muscarinic Receptor Antagonist VU0255035 Delays the Development of Status Epilepticus after Organophosphate Exposure and Prevents Hyperexcitability in the Basolateral Amygdala
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNeuropharmacology

M1 Receptor Role in Seizure Generation by Organophosphates

Steven L. Miller, Vassiliki Aroniadou-Anderjaska, Volodymyr I. Pidoplichko, Taiza H. Figueiredo, James P. Apland, Jishnu K. S. Krishnan and Maria F. M. Braga
Journal of Pharmacology and Experimental Therapeutics January 1, 2017, 360 (1) 23-32; DOI: https://doi.org/10.1124/jpet.116.236125

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleNeuropharmacology

M1 Receptor Role in Seizure Generation by Organophosphates

Steven L. Miller, Vassiliki Aroniadou-Anderjaska, Volodymyr I. Pidoplichko, Taiza H. Figueiredo, James P. Apland, Jishnu K. S. Krishnan and Maria F. M. Braga
Journal of Pharmacology and Experimental Therapeutics January 1, 2017, 360 (1) 23-32; DOI: https://doi.org/10.1124/jpet.116.236125
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • KRM-II-81 Analogs
  • Substituted Tryptamine Activity at 5-HT Receptors and SERT
  • VTA muscarinic M5 receptors and effort-choice behavior
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics