Abstract
Morphine has been widely used as rescue treatment for heart attack and failure in humans for many decades. Relatively little has been known about the role of spinal opioid receptors in morphine cardioprotection. Recent studies have shown that intrathecal injection of morphine can reduce the heart injury caused by ischemia (I)/reperfusion (R) in rats. However, the molecular and cellular mechanisms underlying intrathecal morphine cardioprotection has not been determined. Here, we report that intrathecal morphine postconditioning (IMPOC) rescued mean artery pressure (MAP) and reduced myocardial injury in I/R. Pretreatment with either naloxone (NAL), a selective mu-opioid receptor antagonist, or nitric oxide synthase (NOS) inhibitors via intrathecal delivery completely abolished IMPOC cardioprotection, suggesting that the spinal mu-opioid receptor and its downstream NOS signaling pathway are involved in the mechanism of the morphine-induced effect. Consistent with this, IMPOC significantly enhanced spinal neural NOS phosphorylation, nitric oxide, and cGMP content in a similar time course. Intrathecal application of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a specific inhibitor of guanylate cyclase, completely ablated IMPOC-induced enhancement of cardioprotection and spinal cGMP content. IMPOC rescue of MAP and ischemic injury is correlated with IMPOC enhancement of NOS signaling. Collectively, these findings strengthen the concept of spinal mu-opioid receptors as a therapeutic target that mediates morphine-induced cardioprotection. We also provide evidence suggesting that the activation of spinal NOS signaling is essential for morphine cardioprotection.
Footnotes
- Received March 29, 2016.
- Accepted June 27, 2016.
- Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|