Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNeuropharmacology

Ontogeny of SERT Expression and Antidepressant-like Response to Escitalopram in Wild-Type and SERT Mutant Mice

Nathan C. Mitchell, Georgianna G. Gould, Wouter Koek and Lynette C. Daws
Journal of Pharmacology and Experimental Therapeutics August 2016, 358 (2) 271-281; DOI: https://doi.org/10.1124/jpet.116.233338
Nathan C. Mitchell
Departments of Physiology (N.C.M., G.G.G., L.C.D.), Psychiatry (W.K.), and Pharmacology (L.C.D., W.K.), University of Texas Health Science Center, San Antonio, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Georgianna G. Gould
Departments of Physiology (N.C.M., G.G.G., L.C.D.), Psychiatry (W.K.), and Pharmacology (L.C.D., W.K.), University of Texas Health Science Center, San Antonio, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wouter Koek
Departments of Physiology (N.C.M., G.G.G., L.C.D.), Psychiatry (W.K.), and Pharmacology (L.C.D., W.K.), University of Texas Health Science Center, San Antonio, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lynette C. Daws
Departments of Physiology (N.C.M., G.G.G., L.C.D.), Psychiatry (W.K.), and Pharmacology (L.C.D., W.K.), University of Texas Health Science Center, San Antonio, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Visual Overview

Figure
  • Download figure
  • Open in new tab
  • Download powerpoint

Abstract

Depression is a disabling affective disorder for which the majority of patients are not effectively treated. This problem is exacerbated in children and adolescents for whom only two antidepressants are approved, both of which are selective serotonin reuptake inhibitor (SSRIs). Unfortunately SSRIs are often less effective in juveniles than in adults; however, the mechanism(s) underlying age-dependent responses to SSRIs is unknown. To this end, we compared the antidepressant-like response to the SSRI escitalopram using the tail suspension test and saturation binding of [3H]citalopram to the serotonin transporter (SERT), the primary target of SSRIs, in juvenile [postnatal day (P)21], adolescent (P28), and adult (P90) wild-type (SERT+/+) mice. In addition, to model individuals carrying low-expressing SERT variants, we studied mice with reduced SERT expression (SERT+/−) or lacking SERT (SERT−/−). Maximal antidepressant-like effects were less in P21 mice relative to P90 mice. This was especially apparent in SERT+/− mice. However, the potency for escitalopram to produce antidepressant-like effects in SERT+/+ and SERT+/− mice was greater in P21 and P28 mice than in adults. SERT expression increased with age in terminal regions and decreased with age in cell body regions. Binding affinity values did not change as a function of age or genotype. As expected, in SERT−/− mice escitalopram produced no behavioral effects, and there was no specific [3H]citalopram binding. These data reveal age- and genotype-dependent shifts in the dose-response for escitalopram to produce antidepressant-like effects, which vary with SERT expression, and may contribute to the limited therapeutic response to SSRIs in juveniles and adolescents.

Footnotes

    • Received March 4, 2016.
    • Accepted June 8, 2016.
  • This work was supported by the National Institutes of Health National Institute of Mental Health [Grants MH106978, MH093320, and MH086708] and the Congressionally Directed Medical Research Programs [Award AR110109].

  • The research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

  • dx.doi.org/10.1124/jpet.116.233338.

  • Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 358 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 358, Issue 2
1 Aug 2016
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Ontogeny of SERT Expression and Antidepressant-like Response to Escitalopram in Wild-Type and SERT Mutant Mice
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNeuropharmacology

Ontogeny of SERT Expression and Antidepressant-like Response

Nathan C. Mitchell, Georgianna G. Gould, Wouter Koek and Lynette C. Daws
Journal of Pharmacology and Experimental Therapeutics August 1, 2016, 358 (2) 271-281; DOI: https://doi.org/10.1124/jpet.116.233338

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleNeuropharmacology

Ontogeny of SERT Expression and Antidepressant-like Response

Nathan C. Mitchell, Georgianna G. Gould, Wouter Koek and Lynette C. Daws
Journal of Pharmacology and Experimental Therapeutics August 1, 2016, 358 (2) 271-281; DOI: https://doi.org/10.1124/jpet.116.233338
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Visual Overview
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Substituted tryptamine activity at 5-HT receptors & SERT
  • In Vivo SRI-32743 Attenuates Tat Effects on Extracellular DA
  • Kv7 Opener Attenuates Seizures and Cognitive Deficit
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics