BI 1002494, a Novel Potent and Selective Oral Spleen Tyrosine Kinase Inhibitor, Displays Differential Potency in Human Basophils and B Cells
Visual Overview
Abstract
BI 1002494 [(R)-4-{(R)-1-[7-(3,4,5-trimethoxy-phenyl)-[1,6]napthyridin-5-yloxy]-ethyl}pyrrolidin-2-one] is a novel, potent, and selective spleen tyrosine kinase (SYK) inhibitor with sustained plasma exposure after oral administration in rats, which qualifies this molecule as a good in vitro and in vivo tool compound. BI 1002494 exhibits higher potency in inhibiting high-affinity IgE receptor–mediated mast cell and basophil degranulation (IC50 = 115 nM) compared with B-cell receptor–mediated activation of B cells (IC50 = 810 nM). This may be explained by lower kinase potency when the physiologic ligand B-cell linker was used, suggesting that SYK inhibitors may exhibit differential potency depending on the cell type and the respective signal transduction ligand. A 3-fold decrease in potency was observed in rat basophils (IC50 = 323 nM) compared with human basophils, but a similar species potency shift was not observed in B cells. The lower potency in rat basophils was confirmed in both ex vivo inhibition of bronchoconstriction in precision-cut rat lung slices and in reversal of anaphylaxis-driven airway resistance in rats. The different cellular potencies translated into different in vivo efficacy; full efficacy in a rat ovalbumin model (that contains an element of mast cell dependence) was achieved with a trough plasma concentration of 340 nM, whereas full efficacy in a rat collagen-induced arthritis model (that contains an element of B-cell dependence) was achieved with a trough plasma concentration of 1400 nM. Taken together, these data provide a platform from which different estimates of human efficacious exposures can be made according to the relevant cell type for the indication intended to be treated.
Footnotes
- Received February 25, 2016.
- Accepted March 31, 2016.
This research was supported by Boehringer Ingelheim Pharma GmbH & Co. KG and Boehringer Ingelheim Pharmaceuticals, Inc.
↵This article has supplemental material available at jpet.aspetjournals.org.
- Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|