Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleBehavioral Pharmacology

Comparisons of Δ9-Tetrahydrocannabinol and Anandamide on a Battery of Cognition-Related Behavior in Nonhuman Primates

Brian D. Kangas, Michael Z. Leonard, Vidyanand G. Shukla, Shakiru O. Alapafuja, Spyros P. Nikas, Alexandros Makriyannis and Jack Bergman
Journal of Pharmacology and Experimental Therapeutics April 2016, 357 (1) 125-133; DOI: https://doi.org/10.1124/jpet.115.228189
Brian D. Kangas
Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Preclinical Pharmacology Laboratory, McLean Hospital, Belmont, Massachusetts (B.D.K., M.Z.L., J.B.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (V.G.S., S.O.A., S.P.N., A.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael Z. Leonard
Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Preclinical Pharmacology Laboratory, McLean Hospital, Belmont, Massachusetts (B.D.K., M.Z.L., J.B.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (V.G.S., S.O.A., S.P.N., A.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vidyanand G. Shukla
Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Preclinical Pharmacology Laboratory, McLean Hospital, Belmont, Massachusetts (B.D.K., M.Z.L., J.B.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (V.G.S., S.O.A., S.P.N., A.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shakiru O. Alapafuja
Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Preclinical Pharmacology Laboratory, McLean Hospital, Belmont, Massachusetts (B.D.K., M.Z.L., J.B.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (V.G.S., S.O.A., S.P.N., A.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Spyros P. Nikas
Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Preclinical Pharmacology Laboratory, McLean Hospital, Belmont, Massachusetts (B.D.K., M.Z.L., J.B.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (V.G.S., S.O.A., S.P.N., A.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alexandros Makriyannis
Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Preclinical Pharmacology Laboratory, McLean Hospital, Belmont, Massachusetts (B.D.K., M.Z.L., J.B.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (V.G.S., S.O.A., S.P.N., A.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jack Bergman
Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Preclinical Pharmacology Laboratory, McLean Hospital, Belmont, Massachusetts (B.D.K., M.Z.L., J.B.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (V.G.S., S.O.A., S.P.N., A.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The primary psychoactive ingredient of marijuana, Δ9-tetrahydrocannabinol (Δ9-THC), has medicinal value but also produces unwanted deleterious effects on cognitive function, promoting the search for improved cannabinergic therapeutics. The present studies used a battery of touchscreen procedures in squirrel monkeys to compare the effects of different types of cannabinergic drugs on several measures of performance including learning (repeated acquisition), cognitive flexibility (discrimination reversal), short-term memory (delayed matching-to-sample), attention (psychomotor vigilance), and motivation (progressive ratio). Drugs studied included the cannabinoid agonist Δ9-THC, fatty acid amide hydrolase (FAAH) inhibitor cyclohexylcarbamic acid 3-carbamoylbiphenyl-3-yl ester (URB597), and endocannabinoid anandamide and its stable synthetic analog methanandamide [(R)-(+)-arachidonyl-1′-hydroxy-2′-propylamide]. The effects of Δ9-THC and anandamide after treatment with the cannabinoid receptor type 1 inverse agonist/antagonist rimonabant [5-(4-chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-(piperidin-1-yl)-1Hpyrazole-3-carboxamide] and the FAAH inhibitor URB597, respectively, also were examined. The results showed the following: 1) Δ9-THC produced dose-related impairments of discrimination-based cognitive behavior with potency that varied across tasks (discriminative capability < learning < flexibility < short-term memory); 2) anandamide alone and URB597 alone were without effect on all endpoints; 3) anandamide following URB597 pretreatment and methanandamide had negligible effects on discriminative capability, learning, and reversal, but following large doses affected delayed matching-to-sample performance in some subjects; 4) all drugs, except anandamide and URB597, disrupted attention; and 5) progressive ratio breakpoints were generally unaffected by all drugs tested, suggesting little to no effect on motivation. Taken together, these data indicate that metabolically stable forms of anandamide may have lesser adverse effects on cognitive functions than Δ9-THC, possibly offering a therapeutic advantage in clinical settings.

Footnotes

    • Received July 29, 2015.
    • Accepted January 27, 2016.
  • This research was supported by the National Institutes of Health National Institute on Drug Abuse [Grants K01-DA035974 (to B.D.K.) and R01-DA031020 (to J.B.)]

  • dx.doi.org/10.1124/jpet.115.228189.

  • Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 357 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 357, Issue 1
1 Apr 2016
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Comparisons of Δ9-Tetrahydrocannabinol and Anandamide on a Battery of Cognition-Related Behavior in Nonhuman Primates
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleBehavioral Pharmacology

Effects of Cannabinoids on Cognitive Behavior

Brian D. Kangas, Michael Z. Leonard, Vidyanand G. Shukla, Shakiru O. Alapafuja, Spyros P. Nikas, Alexandros Makriyannis and Jack Bergman
Journal of Pharmacology and Experimental Therapeutics April 1, 2016, 357 (1) 125-133; DOI: https://doi.org/10.1124/jpet.115.228189

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleBehavioral Pharmacology

Effects of Cannabinoids on Cognitive Behavior

Brian D. Kangas, Michael Z. Leonard, Vidyanand G. Shukla, Shakiru O. Alapafuja, Spyros P. Nikas, Alexandros Makriyannis and Jack Bergman
Journal of Pharmacology and Experimental Therapeutics April 1, 2016, 357 (1) 125-133; DOI: https://doi.org/10.1124/jpet.115.228189
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Daily Methocinnamox and Fentanyl Self-Administration
  • Efficacy as a Determinant of Hyperlocomotion by MOR Ligands
  • Abuse Potential of Botanical Cannabidiol
Show more Behavioral Pharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics