Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNeuropharmacology

Abuse-Related Neurochemical Effects of Para-Substituted Methcathinone Analogs in Rats: Microdialysis Studies of Nucleus Accumbens Dopamine and Serotonin

Julie A. Suyama, Farhana Sakloth, Renata Kolanos, Richard A. Glennon, Matthew F. Lazenka, S. Stevens Negus and Matthew L. Banks
Journal of Pharmacology and Experimental Therapeutics January 2016, 356 (1) 182-190; DOI: https://doi.org/10.1124/jpet.115.229559
Julie A. Suyama
Department of Pharmacology and Toxicology (J.A.S., M.F.L., S.S.N., M.L.B.), Department of Medicinal Chemistry (F.S., R.K., R.A.G.), and Institute on Drug and Alcohol Studies (R.A.G., S.S.N., M.L.B.), Virginia Commonwealth University, Richmond, Virginia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Farhana Sakloth
Department of Pharmacology and Toxicology (J.A.S., M.F.L., S.S.N., M.L.B.), Department of Medicinal Chemistry (F.S., R.K., R.A.G.), and Institute on Drug and Alcohol Studies (R.A.G., S.S.N., M.L.B.), Virginia Commonwealth University, Richmond, Virginia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Renata Kolanos
Department of Pharmacology and Toxicology (J.A.S., M.F.L., S.S.N., M.L.B.), Department of Medicinal Chemistry (F.S., R.K., R.A.G.), and Institute on Drug and Alcohol Studies (R.A.G., S.S.N., M.L.B.), Virginia Commonwealth University, Richmond, Virginia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard A. Glennon
Department of Pharmacology and Toxicology (J.A.S., M.F.L., S.S.N., M.L.B.), Department of Medicinal Chemistry (F.S., R.K., R.A.G.), and Institute on Drug and Alcohol Studies (R.A.G., S.S.N., M.L.B.), Virginia Commonwealth University, Richmond, Virginia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Matthew F. Lazenka
Department of Pharmacology and Toxicology (J.A.S., M.F.L., S.S.N., M.L.B.), Department of Medicinal Chemistry (F.S., R.K., R.A.G.), and Institute on Drug and Alcohol Studies (R.A.G., S.S.N., M.L.B.), Virginia Commonwealth University, Richmond, Virginia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Stevens Negus
Department of Pharmacology and Toxicology (J.A.S., M.F.L., S.S.N., M.L.B.), Department of Medicinal Chemistry (F.S., R.K., R.A.G.), and Institute on Drug and Alcohol Studies (R.A.G., S.S.N., M.L.B.), Virginia Commonwealth University, Richmond, Virginia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Matthew L. Banks
Department of Pharmacology and Toxicology (J.A.S., M.F.L., S.S.N., M.L.B.), Department of Medicinal Chemistry (F.S., R.K., R.A.G.), and Institute on Drug and Alcohol Studies (R.A.G., S.S.N., M.L.B.), Virginia Commonwealth University, Richmond, Virginia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Methcathinone (MCAT) is a monoamine releaser and parent compound to a new class of designer drugs that includes the synthetic cathinones mephedrone and flephedrone. Using MCAT and a series of para-substituted (or 4-substituted) MCAT analogs, it has been previously shown that expression of abuse-related behavioral effects in rats correlates both with the volume of the para substituent and in vitro neurochemical selectivity to promote monoamine release via the dopamine (DA) versus serotonin (5-HT) transporters in rat brain synaptosomes. The present study used in vivo microdialysis to determine the relationship between these previous measures and the in vivo neurochemical selectivity of these compounds to alter nucleus accumbens (NAc) DA and 5-HT levels. Male Sprague-Dawley rats were implanted with bilateral guide cannulae targeting the NAc. MCAT and five para-substituted analogs (4-F, 4-Cl, 4-Br, 4-CH3, and 4-OCH3) produced dose- and time-dependent increases in NAc DA and/or 5-HT levels. Selectivity was determined as the dose required to increase peak 5-HT levels by 250% divided by the dose required to increase peak DA levels by 250%. This measure of in vivo neurochemical selectivity varied across compounds and correlated with 1) in vivo expression of abuse-related behavioral effects (r = 0.89, P = 0.02); 2) in vitro selectivity to promote monoamine release via DA and 5-HT transporters (r = 0.95, P < 0.01); and 3) molecular volume of the para substituent (r = −0.85, P = 0.03). These results support a relationship between these molecular, neurochemical, and behavioral measures and support a role for molecular structure as a determinant of abuse-related neurochemical and behavioral effects of MCAT analogs.

Footnotes

    • Received September 23, 2015.
    • Accepted October 14, 2015.
  • The research reported in this publication was supported by the National Institutes of Health National Institute on Drug Abuse [Grants R01DA033930, F30DA037649, and T32DA007027]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

  • dx.doi.org/10.1124/jpet.115.229559.

  • ↵Embedded ImageThis article has supplemental material available at jpet.aspetjournals.org.

  • Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 356 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 356, Issue 1
1 Jan 2016
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Abuse-Related Neurochemical Effects of Para-Substituted Methcathinone Analogs in Rats: Microdialysis Studies of Nucleus Accumbens Dopamine and Serotonin
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNeuropharmacology

Methcathinone Analogs Effects on Accumbens DA and 5HT

Julie A. Suyama, Farhana Sakloth, Renata Kolanos, Richard A. Glennon, Matthew F. Lazenka, S. Stevens Negus and Matthew L. Banks
Journal of Pharmacology and Experimental Therapeutics January 1, 2016, 356 (1) 182-190; DOI: https://doi.org/10.1124/jpet.115.229559

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleNeuropharmacology

Methcathinone Analogs Effects on Accumbens DA and 5HT

Julie A. Suyama, Farhana Sakloth, Renata Kolanos, Richard A. Glennon, Matthew F. Lazenka, S. Stevens Negus and Matthew L. Banks
Journal of Pharmacology and Experimental Therapeutics January 1, 2016, 356 (1) 182-190; DOI: https://doi.org/10.1124/jpet.115.229559
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Substituted Tryptamine Activity at 5-HT Receptors and SERT
  • KRM-II-81 Analogs
  • VTA muscarinic M5 receptors and effort-choice behavior
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics