Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleToxicology

Octreotide Inhibits the Bilirubin Carriers Organic Anion Transporting Polypeptides 1B1 and 1B3 and the Multidrug Resistance-Associated Protein 2

Michele Visentin, Bruno Stieger, Michael Merz and Gerd A. Kullak-Ublick
Journal of Pharmacology and Experimental Therapeutics November 2015, 355 (2) 145-151; DOI: https://doi.org/10.1124/jpet.115.227546
Michele Visentin
Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Switzerland (M.V., B.S., G.A.K.-U.); and Discovery and Investigative Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland (M.M., G.A.K.-U.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bruno Stieger
Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Switzerland (M.V., B.S., G.A.K.-U.); and Discovery and Investigative Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland (M.M., G.A.K.-U.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael Merz
Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Switzerland (M.V., B.S., G.A.K.-U.); and Discovery and Investigative Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland (M.M., G.A.K.-U.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gerd A. Kullak-Ublick
Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Switzerland (M.V., B.S., G.A.K.-U.); and Discovery and Investigative Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland (M.M., G.A.K.-U.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The somatostatin analog octreotide can lead to hyperbilirubinemia without evidence of liver injury. Here we investigate whether octreotide inhibits the main sinusoidal/canalicular bilirubin carriers and whether it is a transport substrate. Octreotide showed the most potent inhibitory effect toward OATP1B1-mediated transport and weaker inhibition for OATP1B3- and MRP2-mediated transport. Octreotide had no effect on OATP2B1-mediated transport. Octreotide inhibited [3H]estradiol-17-β-glucuronide (E17βG) influx mediated by OATP1B1, 1B3, and multidrug resistance-associated protein 2 (MRP2) in a concentration-dependent manner, and the IC50 values were computed to be 23 μM (95% confidence interval [CI] 18-29), 68 μM (95% CI 50-91), and 116.6 μM (95% CI 74.5–182.4), respectively. The interaction between octreotide and OATP1B1 was further studied. Inhibition of [3H]E17βG OATP1B1-mediated transport was purely competitive with no changes in maximum transport capacity (Vmax) and a twofold Km increase when the influx kinetics of [3H]E17βG were measured in the presence of octreotide (8.8 ± 3.1 versus 4.4 ± 1.2 μM, P = 0.03). The inhibition constant (Ki) of octreotide for the transport of [3H]E17βG was calculated at 33.5 ± 5.5 μM. Uptake of radiolabeled octreotide by OATP1B1-CHO cells was higher than in wild-type CHO cells and nonlabeled octreotide at the extracellular compartment was able to trans-stimulate the OATP1B1-mediated efflux of intracellular [3H]E17βG, suggesting that octreotide is a substrate of OATP1B1. In summary, this study shows interaction of octreotide on the human hepatocellular bilirubin transporters OATP1B1, OATP1B3, and MRP2, notably OATP1B1. These findings are in line with the clinical observation that a fraction of patients under treatment with octreotide exhibit hyperbilirubinemia.

Footnotes

    • Received July 13, 2015.
    • Accepted August 31, 2015.
  • This work was supported by the Swiss National Science Foundation [Grant 320030_144193 / 1].

  • dx.doi.org/10.1124/jpet.115.227546.

  • Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 355 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 355, Issue 2
1 Nov 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Octreotide Inhibits the Bilirubin Carriers Organic Anion Transporting Polypeptides 1B1 and 1B3 and the Multidrug Resistance-Associated Protein 2
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleToxicology

Octreotide and Bilirubin Carriers

Michele Visentin, Bruno Stieger, Michael Merz and Gerd A. Kullak-Ublick
Journal of Pharmacology and Experimental Therapeutics November 1, 2015, 355 (2) 145-151; DOI: https://doi.org/10.1124/jpet.115.227546

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleToxicology

Octreotide and Bilirubin Carriers

Michele Visentin, Bruno Stieger, Michael Merz and Gerd A. Kullak-Ublick
Journal of Pharmacology and Experimental Therapeutics November 1, 2015, 355 (2) 145-151; DOI: https://doi.org/10.1124/jpet.115.227546
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Role of FXR in Nitrogen Mustard Lung Injury
  • Nafamostat is a Potent Human Diamine Oxidase Inhibitor
  • Chemoproteomics Investigation of Testicular Toxicity with BTK Inhibitor
Show more Toxicology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics