Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleMinireviews

Trapping Poly(ADP-Ribose) Polymerase

Yuqiao Shen, Mika Aoyagi-Scharber and Bing Wang
Journal of Pharmacology and Experimental Therapeutics June 2015, 353 (3) 446-457; DOI: https://doi.org/10.1124/jpet.114.222448
Yuqiao Shen
BioMarin Pharmaceutical Inc., Novato, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mika Aoyagi-Scharber
BioMarin Pharmaceutical Inc., Novato, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bing Wang
BioMarin Pharmaceutical Inc., Novato, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Recent findings indicate that a major mechanism by which poly(ADP-ribose) polymerase (PARP) inhibitors kill cancer cells is by trapping PARP1 and PARP2 to the sites of DNA damage. The PARP enzyme-inhibitor complex “locks” onto damaged DNA and prevents DNA repair, replication, and transcription, leading to cell death. Several clinical-stage PARP inhibitors, including veliparib, rucaparib, olaparib, niraparib, and talazoparib, have been evaluated for their PARP-trapping activity. Although they display similar capacity to inhibit PARP catalytic activity, their relative abilities to trap PARP differ by several orders of magnitude, with the ability to trap PARP closely correlating with each drug’s ability to kill cancer cells. In this article, we review the available data on molecular interactions between these clinical-stage PARP inhibitors and PARP proteins, and discuss how their biologic differences might be explained by the trapping mechanism. We also discuss how to use the PARP-trapping mechanism to guide the development of PARP inhibitors as a new class of cancer therapy, both for single-agent and combination treatments.

Footnotes

    • Received December 29, 2014.
    • Accepted March 9, 2015.
  • dx.doi.org/10.1124/jpet.114.222448.

  • Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 353 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 353, Issue 3
1 Jun 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Trapping Poly(ADP-Ribose) Polymerase
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleMinireviews

Trapping PARP

Yuqiao Shen, Mika Aoyagi-Scharber and Bing Wang
Journal of Pharmacology and Experimental Therapeutics June 1, 2015, 353 (3) 446-457; DOI: https://doi.org/10.1124/jpet.114.222448

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleMinireviews

Trapping PARP

Yuqiao Shen, Mika Aoyagi-Scharber and Bing Wang
Journal of Pharmacology and Experimental Therapeutics June 1, 2015, 353 (3) 446-457; DOI: https://doi.org/10.1124/jpet.114.222448
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Evidence for PARP Trapping
    • Current View of PARP-Trapping Structure-Activity Relationship
    • Clinical Implications
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Molecular Predictors of Response to Treatment in DME
  • Glycoconjugation in Psoriasis Treatment
  • Use of Tissue Biopsy in Human PK-ADME Studies
Show more Minireviews

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics