Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleMetabolism, Transport, and Pharmacogenomics

Four Cation-Selective Transporters Contribute to Apical Uptake and Accumulation of Metformin in Caco-2 Cell Monolayers

Tianxiang (Kevin) Han, William R. Proctor, Chester L. Costales, Hao Cai, Ruth S. Everett and Dhiren R. Thakker
Journal of Pharmacology and Experimental Therapeutics March 2015, 352 (3) 519-528; DOI: https://doi.org/10.1124/jpet.114.220350
Tianxiang (Kevin) Han
Division of Molecular Pharmaceutics (T.H., W.R.P., C.L.C.) and Division of Pharmacotherapy and Experimental Therapeutics (H.C., R.S.E., D.R.T.), UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William R. Proctor
Division of Molecular Pharmaceutics (T.H., W.R.P., C.L.C.) and Division of Pharmacotherapy and Experimental Therapeutics (H.C., R.S.E., D.R.T.), UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chester L. Costales
Division of Molecular Pharmaceutics (T.H., W.R.P., C.L.C.) and Division of Pharmacotherapy and Experimental Therapeutics (H.C., R.S.E., D.R.T.), UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hao Cai
Division of Molecular Pharmaceutics (T.H., W.R.P., C.L.C.) and Division of Pharmacotherapy and Experimental Therapeutics (H.C., R.S.E., D.R.T.), UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ruth S. Everett
Division of Molecular Pharmaceutics (T.H., W.R.P., C.L.C.) and Division of Pharmacotherapy and Experimental Therapeutics (H.C., R.S.E., D.R.T.), UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dhiren R. Thakker
Division of Molecular Pharmaceutics (T.H., W.R.P., C.L.C.) and Division of Pharmacotherapy and Experimental Therapeutics (H.C., R.S.E., D.R.T.), UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Metformin is the frontline therapy for type II diabetes mellitus. The oral bioavailability of metformin is unexpectedly high, between 40 and 60%, given its hydrophilicity and positive charge at all physiologic pH values. Previous studies in Caco-2 cell monolayers, a cellular model of the human intestinal epithelium, showed that during absorptive transport metformin is taken up into the cells via transporters in the apical (AP) membrane; however, predominant transport to the basolateral (BL) side occurs via the paracellular route because intracellular metformin cannot egress across the BL membrane. Furthermore, these studies have suggested that the AP transporters can contribute to intestinal accumulation and absorption of metformin. Transporter-specific inhibitors as well as a novel approach involving a cocktail of transporter inhibitors with overlapping selectivity were used to identify the AP transporters that mediate metformin uptake in Caco-2 cell monolayers; furthermore, the relative contributions of these transporters in metformin AP uptake were also determined. The organic cation transporter 1, plasma membrane monoamine transporter (PMAT), serotonin reuptake transporter, and choline high-affinity transporter contributed to approximately 25%, 20%, 20%, and 15%, respectively, of the AP uptake of metformin. PMAT-knockdown Caco-2 cells were constructed to confirm the contribution of PMAT in metformin AP uptake because a PMAT-selective inhibitor is not available. The identification of four intestinal transporters that contribute to AP uptake and potentially intestinal absorption of metformin is a significant novel finding that can influence our understanding of metformin pharmacology and intestinal drug-drug interactions involving this highly prescribed drug.

Footnotes

    • Received October 7, 2014.
    • Accepted January 5, 2015.
  • ↵1 Current affiliation: Bristol-Myers Squibb Company, Lawrenceville, New Jersey.

  • ↵2 Current affiliation: Genentech Inc., South San Francisco, California.

  • ↵3 Current affiliation: Pfizer Inc., Groton, Connecticut.

  • T.H. and W.R.P. contributed equally to this work.

  • This work was supported in part by the National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases [Grant R01-DK088097] T.H. was supported by a Predoctoral Fellowship from Johnson & Johnson and Dissertation Completion Fellowship from University of North Carolina at Chapel Hill Graduate School. W.R.P. and C.L.C. were supported by Predoctoral Fellowships from Amgen and the PhRMA Foundation.

  • dx.doi.org/10.1124/jpet.114.220350.

  • ↵Embedded ImageThis article has supplemental material available at jpet.aspetjournals.org.

  • Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 352 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 352, Issue 3
1 Mar 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Four Cation-Selective Transporters Contribute to Apical Uptake and Accumulation of Metformin in Caco-2 Cell Monolayers
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleMetabolism, Transport, and Pharmacogenomics

Four Transporters in Metformin Apical Uptake in Caco-2 Cells

Tianxiang (Kevin) Han, William R. Proctor, Chester L. Costales, Hao Cai, Ruth S. Everett and Dhiren R. Thakker
Journal of Pharmacology and Experimental Therapeutics March 1, 2015, 352 (3) 519-528; DOI: https://doi.org/10.1124/jpet.114.220350

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleMetabolism, Transport, and Pharmacogenomics

Four Transporters in Metformin Apical Uptake in Caco-2 Cells

Tianxiang (Kevin) Han, William R. Proctor, Chester L. Costales, Hao Cai, Ruth S. Everett and Dhiren R. Thakker
Journal of Pharmacology and Experimental Therapeutics March 1, 2015, 352 (3) 519-528; DOI: https://doi.org/10.1124/jpet.114.220350
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • HDL Mimetic 4F Modulates Aβ Distribution in Brain and Plasma
  • AOX1 Inhibition by Gefitinib, Erlotinib, and Metabolites
  • Catalytic Activity of CYP2C9 Variants
Show more Metabolism, Transport, and Pharmacogenomics

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics