Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleCardiovascular

Vanillin and Vanillin Analogs Relax Porcine Coronary and Basilar Arteries by Inhibiting L-Type Ca2+ Channels

Gábor Raffai, Gilson Khang and Paul M. Vanhoutte
Journal of Pharmacology and Experimental Therapeutics January 2015, 352 (1) 14-22; DOI: https://doi.org/10.1124/jpet.114.217935
Gábor Raffai
Department of BIN Fusion Technology, Department of Polymer Nano Science & Technology, Chonbuk National University, Jeonju, South Korea (G.R., G.K., P.M.V.); and Key State Laboratory of Pharmaceutical Biotechnologies and Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong SAR, People’s Republic of China (P.M.V.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gilson Khang
Department of BIN Fusion Technology, Department of Polymer Nano Science & Technology, Chonbuk National University, Jeonju, South Korea (G.R., G.K., P.M.V.); and Key State Laboratory of Pharmaceutical Biotechnologies and Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong SAR, People’s Republic of China (P.M.V.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul M. Vanhoutte
Department of BIN Fusion Technology, Department of Polymer Nano Science & Technology, Chonbuk National University, Jeonju, South Korea (G.R., G.K., P.M.V.); and Key State Laboratory of Pharmaceutical Biotechnologies and Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong SAR, People’s Republic of China (P.M.V.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Vanillin (VA) and vanillyl alcohol (VAA), components of natural vanilla, and ethyl vanillin (EtVA; synthetic analog) are used as flavoring agents and/or as additives by the food, cosmetic, or pharmaceutic industries. VA, VAA, and EtVA possess antioxidant and anti-inflammatory properties, but their vascular effects have not been determined. Therefore, we compared in isolated porcine coronary and basilar arteries the changes in isometric tension caused by VA, VAA, and EtVA. VA and its analogs caused concentration-dependent relaxations of both preparations during contractions from U46619 (9,11-dideoxy-11α,9α-epoxymethanoprostaglandin F2α, a thromboxane A2 receptor agonist), and of coronary arteries contracted with KCl or endothelin-1. The order of potency was VAA < VA < EtVA. The relaxations were not inhibited by endothelium removal, by inhibitors of NO synthases (Nω-nitro-l-arginine methyl ester hydrochloride), cyclooxygenases (indomethacin), soluble guanylyl cyclase (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one [ODQ]), KCa (1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole [TRAM-34], 6,12,19,20,25,26-hexahydro-5,27:13,18:21,24-trietheno-11,7-metheno-7H-dibenzo[b,n][1,5,12,16]tetraazacyclotricosine-5,13-diium ditrifluoroacetate hydrate [UCL-1684], or iberiotoxin), by KATP (glibenclamide), by Kir (BaCl2), by transient receptor potential receptor vanilloid 3 (TRPV3) channels (ruthenium red), or by antioxidants (catalase, apocynin, tempol, N-acetylcysteine, tiron). VA and its analogs inhibited contractions induced by Ca2+ reintroduction in coronary arteries, and by an opener of L-type Ca2+-channels (methyl 2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-1,4-dihydropyridine-3-carboxylate [Bay K8644]) in coronary and basilar arteries. They inhibited contractions of coronary rings induced by the protein kinase C activator phorbol 12,13-dibutyrate to the same extent as the removal of extracellular Ca2+ or incubation with nifedipine. Thus, in porcine arteries, relaxation from VA (and its analogs) is due to inhibition of L-type Ca2+ channels. Hence, these compounds could be used to relieve coronary or cerebral vasospasms due to exaggerated Ca2+ influx, but therapeutic efficacy would require exposures that far exceed the current levels obtained by the use of vanillin additives.

Footnotes

    • Received June 27, 2014.
    • Accepted October 23, 2014.
  • This work was supported by Brain Korea 21 PLUS Project, National Research Foundation of Korea and National Research Foundation of Korea [Grant 2012M3A9C6050204].

  • dx.doi.org/10.1124/jpet.114.217935.

  • Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 352 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 352, Issue 1
1 Jan 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Vanillin and Vanillin Analogs Relax Porcine Coronary and Basilar Arteries by Inhibiting L-Type Ca2+ Channels
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleCardiovascular

Coronary and Basilar Arterial Relaxations to Vanillin

Gábor Raffai, Gilson Khang and Paul M. Vanhoutte
Journal of Pharmacology and Experimental Therapeutics January 1, 2015, 352 (1) 14-22; DOI: https://doi.org/10.1124/jpet.114.217935

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleCardiovascular

Coronary and Basilar Arterial Relaxations to Vanillin

Gábor Raffai, Gilson Khang and Paul M. Vanhoutte
Journal of Pharmacology and Experimental Therapeutics January 1, 2015, 352 (1) 14-22; DOI: https://doi.org/10.1124/jpet.114.217935
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Anti-apoptotic effect of rosuvastatin via autophagy
  • Improved Assessment of Cardiovascular Safety Data
  • G6PD, DNA methylation, and PAH
Show more Cardiovascular

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics