Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleDrug Discovery and Translational Medicine

A Mitochondrial-Targeted Coenzyme Q Analog Prevents Weight Gain and Ameliorates Hepatic Dysfunction in High-Fat–Fed Mice

Brian D. Fink, Judith A. Herlein, Deng Fu Guo, Chaitanya Kulkarni, Benjamin J. Weidemann, Liping Yu, Justin L. Grobe, Kamal Rahmouni, Robert J. Kerns and William I. Sivitz
Journal of Pharmacology and Experimental Therapeutics December 2014, 351 (3) 699-708; DOI: https://doi.org/10.1124/jpet.114.219329
Brian D. Fink
Department of Internal Medicine/Endocrinology, University of Iowa and the Iowa City Veterans Affairs Medical Center (B.D.F., J.A.H., W.I.S.), and the Departments of Pharmacology (D.F.G., B.J.W., J.L.G.), Pharmaceutical Sciences and Experimental Therapeutics (C.K., R.J.K.), Biochemistry (L.Y.), Pharmacology and Internal Medicine/Cardiology (K.R.), and Primary Laboratory (W.I.S.), University of Iowa, Iowa City, Iowa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Judith A. Herlein
Department of Internal Medicine/Endocrinology, University of Iowa and the Iowa City Veterans Affairs Medical Center (B.D.F., J.A.H., W.I.S.), and the Departments of Pharmacology (D.F.G., B.J.W., J.L.G.), Pharmaceutical Sciences and Experimental Therapeutics (C.K., R.J.K.), Biochemistry (L.Y.), Pharmacology and Internal Medicine/Cardiology (K.R.), and Primary Laboratory (W.I.S.), University of Iowa, Iowa City, Iowa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Deng Fu Guo
Department of Internal Medicine/Endocrinology, University of Iowa and the Iowa City Veterans Affairs Medical Center (B.D.F., J.A.H., W.I.S.), and the Departments of Pharmacology (D.F.G., B.J.W., J.L.G.), Pharmaceutical Sciences and Experimental Therapeutics (C.K., R.J.K.), Biochemistry (L.Y.), Pharmacology and Internal Medicine/Cardiology (K.R.), and Primary Laboratory (W.I.S.), University of Iowa, Iowa City, Iowa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chaitanya Kulkarni
Department of Internal Medicine/Endocrinology, University of Iowa and the Iowa City Veterans Affairs Medical Center (B.D.F., J.A.H., W.I.S.), and the Departments of Pharmacology (D.F.G., B.J.W., J.L.G.), Pharmaceutical Sciences and Experimental Therapeutics (C.K., R.J.K.), Biochemistry (L.Y.), Pharmacology and Internal Medicine/Cardiology (K.R.), and Primary Laboratory (W.I.S.), University of Iowa, Iowa City, Iowa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Benjamin J. Weidemann
Department of Internal Medicine/Endocrinology, University of Iowa and the Iowa City Veterans Affairs Medical Center (B.D.F., J.A.H., W.I.S.), and the Departments of Pharmacology (D.F.G., B.J.W., J.L.G.), Pharmaceutical Sciences and Experimental Therapeutics (C.K., R.J.K.), Biochemistry (L.Y.), Pharmacology and Internal Medicine/Cardiology (K.R.), and Primary Laboratory (W.I.S.), University of Iowa, Iowa City, Iowa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Liping Yu
Department of Internal Medicine/Endocrinology, University of Iowa and the Iowa City Veterans Affairs Medical Center (B.D.F., J.A.H., W.I.S.), and the Departments of Pharmacology (D.F.G., B.J.W., J.L.G.), Pharmaceutical Sciences and Experimental Therapeutics (C.K., R.J.K.), Biochemistry (L.Y.), Pharmacology and Internal Medicine/Cardiology (K.R.), and Primary Laboratory (W.I.S.), University of Iowa, Iowa City, Iowa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Justin L. Grobe
Department of Internal Medicine/Endocrinology, University of Iowa and the Iowa City Veterans Affairs Medical Center (B.D.F., J.A.H., W.I.S.), and the Departments of Pharmacology (D.F.G., B.J.W., J.L.G.), Pharmaceutical Sciences and Experimental Therapeutics (C.K., R.J.K.), Biochemistry (L.Y.), Pharmacology and Internal Medicine/Cardiology (K.R.), and Primary Laboratory (W.I.S.), University of Iowa, Iowa City, Iowa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kamal Rahmouni
Department of Internal Medicine/Endocrinology, University of Iowa and the Iowa City Veterans Affairs Medical Center (B.D.F., J.A.H., W.I.S.), and the Departments of Pharmacology (D.F.G., B.J.W., J.L.G.), Pharmaceutical Sciences and Experimental Therapeutics (C.K., R.J.K.), Biochemistry (L.Y.), Pharmacology and Internal Medicine/Cardiology (K.R.), and Primary Laboratory (W.I.S.), University of Iowa, Iowa City, Iowa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert J. Kerns
Department of Internal Medicine/Endocrinology, University of Iowa and the Iowa City Veterans Affairs Medical Center (B.D.F., J.A.H., W.I.S.), and the Departments of Pharmacology (D.F.G., B.J.W., J.L.G.), Pharmaceutical Sciences and Experimental Therapeutics (C.K., R.J.K.), Biochemistry (L.Y.), Pharmacology and Internal Medicine/Cardiology (K.R.), and Primary Laboratory (W.I.S.), University of Iowa, Iowa City, Iowa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William I. Sivitz
Department of Internal Medicine/Endocrinology, University of Iowa and the Iowa City Veterans Affairs Medical Center (B.D.F., J.A.H., W.I.S.), and the Departments of Pharmacology (D.F.G., B.J.W., J.L.G.), Pharmaceutical Sciences and Experimental Therapeutics (C.K., R.J.K.), Biochemistry (L.Y.), Pharmacology and Internal Medicine/Cardiology (K.R.), and Primary Laboratory (W.I.S.), University of Iowa, Iowa City, Iowa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We hypothesized that the mitochondrial-targeted antioxidant, mitoquinone (mitoQ), known to have mitochondrial uncoupling properties, might prevent the development of obesity and mitigate liver dysfunction by increasing energy expenditure, as opposed to reducing energy intake. We administered mitoQ or vehicle (ethanol) to obesity-prone C57BL/6 mice fed high-fat (HF) or normal-fat (NF) diets. MitoQ (500 µM) or vehicle (ethanol) was added to the drinking water for 28 weeks. MitoQ significantly reduced total body mass and fat mass in the HF-fed mice but had no effect on these parameters in NF mice. Food intake was reduced by mitoQ in the HF-fed but not in the NF-fed mice. Average daily water intake was reduced by mitoQ in both the NF- and HF-fed mice. Hypothalamic expression of neuropeptide Y, agouti-related peptide, and the long form of the leptin receptor were reduced in the HF but not in the NF mice. Hepatic total fat and triglyceride content did not differ between the mitoQ-treated and control HF-fed mice. However, mitoQ markedly reduced hepatic lipid hydroperoxides and reduced circulating alanine aminotransferase, a marker of liver function. MitoQ did not alter whole-body oxygen consumption or liver mitochondrial oxygen utilization, membrane potential, ATP production, or production of reactive oxygen species. In summary, mitoQ added to drinking water mitigated the development of obesity. Contrary to our hypothesis, the mechanism involved decreased energy intake likely mediated at the hypothalamic level. MitoQ also ameliorated HF-induced liver dysfunction by virtue of its antioxidant properties without altering liver fat or mitochondrial bioenergetics.

Footnotes

    • Received August 20, 2014.
    • Accepted October 8, 2014.
  • These studies were supported by resources and the use of facilities at the Department of Veterans Affairs, Iowa City Health Care System, Iowa City, Iowa [Grant 2I01BX000285-05]; the National Institutes of Health National Heart, Lung, and Blood Institute [Grant 5R01-HL073166]; by the Fraternal Order of the Eagles; by a National Research Service Award [Grant T32-GM008365] Predoctoral Training Program in Biotechnology to C.K.; and by a fellowship from the American Physiological Society to B.J.W.

  • dx.doi.org/10.1124/jpet.114.219329.

  • U.S. Government work not protected by U.S. copyright
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 351 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 351, Issue 3
1 Dec 2014
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A Mitochondrial-Targeted Coenzyme Q Analog Prevents Weight Gain and Ameliorates Hepatic Dysfunction in High-Fat–Fed Mice
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleDrug Discovery and Translational Medicine

Obesity and a Coenzyme Q Analog

Brian D. Fink, Judith A. Herlein, Deng Fu Guo, Chaitanya Kulkarni, Benjamin J. Weidemann, Liping Yu, Justin L. Grobe, Kamal Rahmouni, Robert J. Kerns and William I. Sivitz
Journal of Pharmacology and Experimental Therapeutics December 1, 2014, 351 (3) 699-708; DOI: https://doi.org/10.1124/jpet.114.219329

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleDrug Discovery and Translational Medicine

Obesity and a Coenzyme Q Analog

Brian D. Fink, Judith A. Herlein, Deng Fu Guo, Chaitanya Kulkarni, Benjamin J. Weidemann, Liping Yu, Justin L. Grobe, Kamal Rahmouni, Robert J. Kerns and William I. Sivitz
Journal of Pharmacology and Experimental Therapeutics December 1, 2014, 351 (3) 699-708; DOI: https://doi.org/10.1124/jpet.114.219329
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • TAK-994: an orally available orexin 2 receptor agonist
  • XEN602 Inhibits DMT1 in vitro and in vivo
  • Metformin alters lipidome independent of diabetes control
Show more Drug Discovery and Translational Medicine

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics