Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleCellular and Molecular

No Evidence for Histamine H4 Receptor in Human Monocytes

Kristin Werner, Detlef Neumann, Armin Buschauer and Roland Seifert
Journal of Pharmacology and Experimental Therapeutics December 2014, 351 (3) 519-526; DOI: https://doi.org/10.1124/jpet.114.218107
Kristin Werner
Institute of Pharmacology, Hannover Medical School, Hannover, Germany (K.W., D.N., R.S.); and Department of Pharmaceutical and Medicinal Chemistry II, University of Regensburg, Regensburg, Germany (A.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Detlef Neumann
Institute of Pharmacology, Hannover Medical School, Hannover, Germany (K.W., D.N., R.S.); and Department of Pharmaceutical and Medicinal Chemistry II, University of Regensburg, Regensburg, Germany (A.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Armin Buschauer
Institute of Pharmacology, Hannover Medical School, Hannover, Germany (K.W., D.N., R.S.); and Department of Pharmaceutical and Medicinal Chemistry II, University of Regensburg, Regensburg, Germany (A.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roland Seifert
Institute of Pharmacology, Hannover Medical School, Hannover, Germany (K.W., D.N., R.S.); and Department of Pharmaceutical and Medicinal Chemistry II, University of Regensburg, Regensburg, Germany (A.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

The histamine H4 receptor (H4R) is a classic pertussis toxin-sensitive Gi protein–coupled receptor that mediates increases in intracellular calcium concentration ([Ca2+]i). The presence of H4R in human eosinophils has been rigorously documented by several independent groups. It has also been suggested that H4R is expressed in human monocytes, but this suggestion hinges in part on H4R antibodies with questionable specificity. This situation prompted us to reinvestigate H4R expression in human monocytes. As positive control, we studied human embryonic kidney 293T cells stably expressing the human H4R (hH4R). In these cells, histamine (HA) and the H4R agonist UR-PI376 (2-cyano-1-[4-(1H-imidazol-4-yl)butyl]-3-[(2-phenylthio)ethyl]guanidine) induced pertussis toxin–sensitive [Ca2+]i increases. However, in quantitative real-time polymerase chain reaction studies we failed to detect hH4R mRNA in human monocytes and U937 promonocytes. In human monocytes, ATP and N-formyl-l-methionyl-l-leucyl-l-phenylalanine increased [Ca2+]i, but HA, UR-PI376, and 5-methylhistamine (a dual H4R/H2 receptor agonist) did not. In U937 promonocytes and differentiated U937 cells, HA increased [Ca2+]i, but this increase was mediated via HA H1 receptor. In conclusion, there is no evidence for the presence of H4R in human monocytes.

Footnotes

    • Received July 6, 2014.
    • Accepted September 29, 2014.
  • This work was supported by a fellowship of the Studienstiftung des deutschen Volkes (to K.W.) and the Research Training Group 1910 of the Deutsche Forschungsgemeinschaft [GRK1910] (to A.B. and R.S.).

  • dx.doi.org/10.1124/jpet.114.218107.

  • ↵Embedded ImageThis article has supplemental material available at jpet.aspetjournals.org.

  • Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 351 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 351, Issue 3
1 Dec 2014
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
No Evidence for Histamine H4 Receptor in Human Monocytes
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleCellular and Molecular

No Evidence for H4R in Human Monocytes

Kristin Werner, Detlef Neumann, Armin Buschauer and Roland Seifert
Journal of Pharmacology and Experimental Therapeutics December 1, 2014, 351 (3) 519-526; DOI: https://doi.org/10.1124/jpet.114.218107

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleCellular and Molecular

No Evidence for H4R in Human Monocytes

Kristin Werner, Detlef Neumann, Armin Buschauer and Roland Seifert
Journal of Pharmacology and Experimental Therapeutics December 1, 2014, 351 (3) 519-526; DOI: https://doi.org/10.1124/jpet.114.218107
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • PARPi with vitamin C, decitabine or azacitidine for APL.
  • Circ-KRT6C/miR-485-3p/PDL1 axis in colorectal cancer.
  • Zebrafish Gstp1 Drug Response
Show more Cellular and Molecular

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics