Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleBehavioral Pharmacology

A Cycloartane Glycoside Derived from Actaea racemosa L. Modulates GABAA Receptors and Induces Pronounced Sedation in Mice

Barbara Strommer, Sophia Khom, Iris Kastenberger, Serhat Sezai Cicek, Hermann Stuppner, Christoph Schwarzer and Steffen Hering
Journal of Pharmacology and Experimental Therapeutics November 2014, 351 (2) 234-242; DOI: https://doi.org/10.1124/jpet.114.218024
Barbara Strommer
Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (B.S., S.K., S.H.); Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria (I.K., C.S.); and Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria (S.S.C., H.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sophia Khom
Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (B.S., S.K., S.H.); Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria (I.K., C.S.); and Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria (S.S.C., H.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Iris Kastenberger
Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (B.S., S.K., S.H.); Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria (I.K., C.S.); and Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria (S.S.C., H.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Serhat Sezai Cicek
Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (B.S., S.K., S.H.); Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria (I.K., C.S.); and Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria (S.S.C., H.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hermann Stuppner
Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (B.S., S.K., S.H.); Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria (I.K., C.S.); and Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria (S.S.C., H.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christoph Schwarzer
Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (B.S., S.K., S.H.); Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria (I.K., C.S.); and Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria (S.S.C., H.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Steffen Hering
Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (B.S., S.K., S.H.); Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria (I.K., C.S.); and Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria (S.S.C., H.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

23-O-Acetylshengmanol 3-O-β-D-xylopyranoside (Ac-SM) isolated from Actaea racemosa L.—an herbal remedy for the treatment of mild menopausal disorders—has been recently identified as a novel efficacious modulator of GABAA receptors composed of α1-, β2-, and γ2S-subunits. In the present study, we analyzed a potential subunit-selective modulation of GABA-induced chloride currents (IGABA) at GABA concentrations eliciting 3–8% of the maximal GABA response (EC3–8) through nine GABAA receptor isoforms expressed in Xenopus laevis oocytes by Ac-SM with two-microelectrode voltage clamp and behavioral effects 30 minutes after intraperitoneal application in a mouse model. Efficacy of IGABA enhancement by Ac-SM displayed a mild α-subunit dependence with α2β2γ2S (maximal IGABA potentiation [Emax] = 1454 ± 97%) and α5β2γ2S (Emax = 1408 ± 87%) receptors being most efficaciously modulated, followed by slightly weaker IGABA enhancement through α1β2γ2S (Emax = 1187 ± 166%), α3β2γ2S (Emax = 1174 ± 218%), and α6β2γ2S (Emax = 1171 ± 274%) receptors and less pronounced effects on receptors composed of α4β2γ2S (Emax = 752 ± 53%) subunits, whereas potency was not affected by the subunit composition (EC50 values ranging from α1β2γ2S = 35.4 ± 12.3 µM to α5β2γ2S = 50.9 ± 11.8 µM). Replacing β2- with β1- or β3-subunits as well as omitting the γ2S-subunit affected neither efficacy nor potency of IGABA enhancement by Ac-SM. Ac-SM shifted the GABA concentration-response curve toward higher GABA sensitivity (about 3-fold) and significantly increased the maximal GABA response by 44 ± 13%, indicating a pharmacological profile distinct from a pure allosteric GABAA receptor modulator. In mice, Ac-SM significantly reduced anxiety-related behavior in the elevated plus maze test at a dose of 0.6 mg/kg, total ambulation in the open field test at doses ≥6 mg/kg, stress-induced hyperthermia at doses ≥0.6 mg/kg, and significantly elevated seizure threshold at doses ≥20 mg/kg body weight. High efficacy and long biologic half-life of Ac-SM suggest that potential cumulative sedative side effects upon repetitive intake of A. racemosa L. preparations might not be negligible.

Footnotes

    • Received July 1, 2014.
    • Accepted August 21, 2014.
  • B.S. and S.K. contributed equally to this work.

  • This work was supported by the Austrian Science Fund [Grants P-22395, P-21241, TRP-107, W-1232, and I-977].

  • dx.doi.org/10.1124/jpet.114.218024.

  • Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 351 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 351, Issue 2
1 Nov 2014
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A Cycloartane Glycoside Derived from Actaea racemosa L. Modulates GABAA Receptors and Induces Pronounced Sedation in Mice
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleBehavioral Pharmacology

GABAA Receptor Modulation by Ac-SM

Barbara Strommer, Sophia Khom, Iris Kastenberger, Serhat Sezai Cicek, Hermann Stuppner, Christoph Schwarzer and Steffen Hering
Journal of Pharmacology and Experimental Therapeutics November 1, 2014, 351 (2) 234-242; DOI: https://doi.org/10.1124/jpet.114.218024

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleBehavioral Pharmacology

GABAA Receptor Modulation by Ac-SM

Barbara Strommer, Sophia Khom, Iris Kastenberger, Serhat Sezai Cicek, Hermann Stuppner, Christoph Schwarzer and Steffen Hering
Journal of Pharmacology and Experimental Therapeutics November 1, 2014, 351 (2) 234-242; DOI: https://doi.org/10.1124/jpet.114.218024
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Varenicline and epibatidine as opioid adjuvants
  • MCAM reverses and prevents fentanyl ventilatory depression
  • Kv7 opener SCR2682 alleviates pain
Show more Behavioral Pharmacology

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics